煤矿矿井通风与安全监控现状及改进策略

崔 腾 王 星 张晓明 神木县隆德矿业有限责任公司 陕西 榆林 719000

摘 要:煤矿矿井通风与安全监控对于煤矿安全生产至关重要。当前煤矿通风以机械通风为主,通风设备智能化有一定进展,但存在风量不足、风流不合理、通风设施老化等问题。安全监控系统由传感器与监测设备、数据采集与分析等构成,技术不断发展但有监测盲区、数据传输与处理延迟、人员操作不当等问题。改进策略包括通风系统优化设计,如合理规划风流路径、更新设备、健全管理制度;安全监控系统技术提升,如改进传感器技术、应用人工智能与大数据;加强通风与监控系统集成;以及人员培训与安全文化建设,以提高煤矿安全生产水平。

关键词:煤矿;矿井通风;安全监控现状;改进策略

引言:煤矿生产中,矿井通风与安全监控是保障作业安全、降低事故风险的关键环节。通风系统负责为井下输送新鲜空气、排除有害物和调节气候;安全监控系统实时监测各类环境参数,及时察觉安全隐患。然而,随着煤矿开采深度和规模变化,当前通风与安全监控体系暴露出诸多问题,严重威胁着煤矿安全生产与人员生命安全。

1 煤矿矿井通风的基本概念

煤矿矿井通风的首要任务是为井下作业人员提供充 足的新鲜空气。井下工作环境封闭,人员呼吸需要消耗 氧气,持续供应新鲜空气才能维持生命所需的氧气含 量。每一位井下作业人员都依赖通风系统,从地面引入 富含氧气的空气,满足正常呼吸需求,确保身体机能的 正常运转。通风系统还承担着冲淡并排除井下有毒有害 气体和粉尘的重任。煤矿开采过程中, 会产生诸如一氧 化碳、硫化氢、甲烷等有毒有害气体,以及大量的煤 尘。这些物质对人体健康危害极大,一氧化碳会阻碍人 体血液对氧气的输送,引发中毒;硫化氢具有强烈毒 性,低浓度即可对呼吸道等造成损害;甲烷则是易燃易 爆气体, 当其在空气中达到一定浓度时, 遇明火极易引 发爆炸。而粉尘不仅会导致矿工患上尘肺病等职业病, 还会影响视线,增加事故发生的风险。矿井通风通过风 流的流动,将这些有害气体和粉尘稀释并排出矿井,有 效降低其在井下空气中的浓度, 营造相对安全的作业环 境。此外,调节井下气候也是通风的重要作用。井下温 度、湿度受多种因素影响,往往不利于人员作业。过高 的温度会使人体散热困难,导致疲劳、中暑等情况;湿 度过大则可能影响设备运行,增加锈蚀风险。通风系统 可通过控制风流的流量、速度等参数,调节井下的温度 和湿度, 创造出适宜人员工作和设备运行的环境条件。

从系统构成来看,煤矿矿井通风系统涵盖通风网络、通风动力和通风控制设施。通风网络如同人体的血管,由进风巷道、回风巷道、采掘工作面巷道等构成,决定了风流的流动路径;通风动力设备,如主通风机和局部通风机,就像人体的心脏,为主通风机负责全矿井的空气输送,局部通风机则保障特定区域的通风;通风控制设施,像风门、风窗、风桥等,它们如同调节阀门,控制着风流的方向、风量和风速,确保通风系统高效稳定运行。不同的矿井通风方式,如中央式、对角式、分区式和混合式,需根据矿井的地质条件、开采规模等因素进行选择,以实现最佳的通风效果。

2 煤矿矿井通风现状分析

2.1 当前煤矿通风的技术现状

第一,在煤矿通风中,自然通风与机械通风是两种 主要方式。自然通风依靠矿井内外空气的温度差、密度 差等自然因素形成的压力差,促使空气在矿井内流动。 虽然这种方式成本较低,但通风效果受自然条件制约明 显,难以保证稳定、持续的通风量,在复杂的煤矿开采 环境中, 无法满足安全生产需求。因此, 现代煤矿多以 机械通风为主。机械通风通过安装通风机, 主动向矿井 内输送新鲜空气和排出污浊空气。通风机可根据矿井的 实际需求,精准调节风量和风压,确保井下各作业区域 的通风质量,为安全生产提供可靠保障。第二,当前煤 矿通风设备种类繁多, 主通风机作为核心设备, 通常采 用轴流式或离心式风机。轴流式风机具有风量大、风压 较高、调节方便等优点,在煤矿通风中应用广泛;离心 式风机则适用于一些通风阻力较大的矿井[1]。除此之外, 还有局部通风机用于掘进工作面等局部区域的通风。随 着技术的发展,通风设备在智能化、自动化方面取得了 一定进展,一些通风机配备了远程监控系统,可实时监 测设备的运行状态、风量、风压等参数,便于及时调整和维护。

2.2 煤矿通风存在的主要问题

(1)风量不足:部分煤矿由于通风系统设计不合 理, 通风网络复杂, 存在通风阻力过大的情况, 导致实 际通风量无法满足井下作业的需求。此外, 通风设备老 化、风机性能下降, 也会使风量供应不足。风量不足会 使井下有毒有害气体积聚,增加瓦斯爆炸、中毒等事故 的风险。(2)风流不合理:矿井内风流路线规划不当, 存在风流短路、串联通风等现象。风流短路会使新鲜 空气未充分流经作业区域就直接排出矿井,降低通风效 率; 串联通风则会导致下一个作业地点的空气质量受到 前一个地点的污染,一旦前一个地点发生事故,容易波 及后续区域,扩大事故影响范围。(3)通风设施老化: 煤矿通风设施长期处于恶劣的工作环境中, 风门、风 窗、风筒等设施容易出现磨损、腐蚀、漏风等问题。通 风设施老化不仅降低了通风效果,还增加了通风能耗, 由于漏风导致的风流不稳定,会进一步影响通风系统的 可靠性和安全性。

3 煤矿安全监控现状分析

3.1 安全监控系统的构成

(1)传感器与监测设备:这是安全监控系统的"触角"。各类传感器分布在煤矿井下各个关键位置,如瓦斯传感器用于精准监测瓦斯浓度,一氧化碳传感器时刻警惕有毒气体的产生,风速传感器测量风流速度,温度传感器感知环境温度等。这些传感器能够实时捕捉环境参数的变化,并将数据传输给后续设备。此外,还有烟雾传感器、粉尘传感器等,它们共同构建起全方位的监测体系,不放过任何可能危及安全的蛛丝马迹。(2)数据采集与分析:数据采集装置负责收集各个传感器传来的信息,并将其转化为可处理的数字信号。通过高效的数据传输网络,这些数据被迅速传输至数据处理中心。在数据处理中心,运用先进的算法和软件对大量数据进行分析。通过对比预设的安全阈值,判断矿井环境是否处于安全状态,一旦发现异常,及时发出预警信息,为后续的应急处置提供关键依据。

3.2 当前安全监控技术的发展现状

随着技术的不断进步,气体监测技术愈发精准和灵敏。新型的瓦斯传感器不仅响应速度快,能够在极短时间内察觉瓦斯浓度的细微变化,而且测量精度更高,减少误报率。同时对于一氧化碳、硫化氢等多种有害气体的复合监测技术也得到了发展,能够同时准确监测多种气体的浓度,为全面评估矿井空气质量提供了有力支

持。除了气体监测,对矿井环境的其他方面监测也取得了显著进展。高精度的温度、湿度传感器能够实时反馈井下的气候条件,避免因环境因素引发的安全问题。此外,对矿井顶板压力、地音等参数的监测技术不断完善,有助于提前预测顶板垮落等地质灾害,保障矿工的生命安全。

3.3 安全监控系统存在的主要问题

(1)监测盲区: 部分煤矿由于井下地形复杂, 存在 一些传感器难以覆盖的区域,形成监测盲区。例如在一 些偏远的巷道尽头、采空区边缘等位置,可能无法及时 获取环境数据。一旦这些区域发生瓦斯积聚、火灾等事 故,难以及时发现,从而延误最佳的处理时机。(2) 数据传输与处理延迟:煤矿井下环境恶劣,电磁干扰较 强,可能导致数据传输过程中出现信号丢失、延迟等问 题。同时,随着监测数据量的不断增加,数据处理中心 有时无法及时对海量数据进行高效分析,导致预警信息 发布滞后,影响了安全监控系统的实时性和有效性。 (3)人员操作不当: 部分操作人员对安全监控系统的操 作规范和技术原理掌握不足,在设备安装、调试和日常 维护过程中存在失误[2]。比如,传感器安装位置不准确, 无法真实反映周围环境参数;对预警信息处理不及时, 缺乏正确的应急响应流程等,这些人为因素都削弱了安 全监控系统的实际作用。

4 煤矿通风与安全监控的改进策略

4.1 通风系统的优化设计

第一,科学合理地规划矿井内的风流路径是通风系 统优化的关键。先要对矿井的地质结构、开采布局进行 深入分析, 依据这些因素精准设计通风网络, 避免出现 风流短路、串联通风等不合理现象。通过合理设置通风 巷道的走向、断面尺寸以及通风设施的位置,确保风流 能够均匀、稳定地流经各个作业区域,提高通风效率, 为井下作业人员提供充足的新鲜空气,同时有效排出有 毒有害气体和粉尘。第二,随着科技的飞速发展,煤矿 通风设备也需要不断更新换代。采用先进的轴流式或离 心式通风机,这些新型设备具有更高的通风效率、更大 的风量调节范围以及更稳定的运行性能。配备先进的监 控系统, 能够实时监测通风机的运行状态, 如风量、风 压、电机温度等参数,一旦发现异常情况,立即自动报 警并采取相应的调整措施,确保通风设备的可靠运行。 第三,建立健全严格的矿井通风管理制度是保障通风系 统正常运行的重要保障。明确各岗位的职责和权限,制 定详细的操作规程和安全标准。加强对通风系统的日常 维护和检修工作,定期对通风设备、通风设施进行检

查、调试和维护,及时发现并处理潜在的问题。

4.2 安全监控系统的技术提升

4.2.1 传感器技术的改进

传感器作为安全监控系统的核心部件,其性能的提升至关重要。研发和应用高精度、高灵敏度、稳定性强的传感器,能够更准确地监测矿井内的各种参数,如瓦斯浓度、一氧化碳浓度、风速、温度等。还要提高传感器的抗干扰能力,使其能够在复杂的井下环境中稳定工作,减少误报和漏报现象的发生。

4.2.2 数据处理与实时监控技术

采用先进的数据处理算法和软件,提高对海量监测数据的处理速度和分析能力。通过建立数据模型,对监测数据进行实时分析和预测,及时发现潜在的安全隐患,并发出预警信号^[3]。加强实时监控技术的应用,实现对矿井内各个区域的全方位、实时监控,工作人员可以通过监控系统实时了解井下的情况,及时做出决策。

4.2.3 人工智能与大数据在安全监控中的应用

将人工智能和大数据技术引入煤矿安全监控系统,能够实现对安全风险的智能识别和预警。通过对大量历史数据的分析和学习,建立安全风险预测模型,提前预测可能发生的安全事故,为煤矿安全生产提供科学依据。再利用人工智能技术实现对监控设备的智能控制,如自动调整通风设备的运行参数、自动启动应急救援预案等,提高安全监控系统的智能化水平。

4.3 通风与监控系统的集成

先将通风系统和安全监控系统进行深度集成,构建智能通风系统。通过数据共享和信息交互,实现通风系统和安全监控系统的协同运行。当安全监控系统监测到瓦斯浓度超标、一氧化碳浓度升高或其他异常情况时,智能通风系统能够自动调整通风设备的运行参数,增加通风量,降低有害气体浓度,同时发出警报,通知相关人员采取进一步的措施。再利用自动化和信息化技术,实现对通风与监控系统的远程控制和管理。工作人员可以通过计算机或移动设备,随时随地对通风设备和监控

设备进行监控和操作,提高管理效率和决策的科学性。 还要建立完善的信息化管理平台,对通风与监控系统的 数据进行集中管理和分析,为煤矿安全生产提供全面的 信息支持。

4.4 人员培训与安全文化建设

首先,加强对煤矿从业人员的安全操作培训,提高 其安全意识和操作技能。培训内容应包括通风系统和安 全监控系统的原理、操作方法、维护要点以及应急处理 措施等。通过定期组织培训和考核,确保从业人员能够 熟练掌握相关知识和技能,正确操作和维护通风与监控 设备,避免因人为因素导致的安全事故^[4]。其次,建立健 全严格的安全管理制度,明确各岗位的安全职责,加强 对安全生产的监督和考核。完善安全事故应急预案,定 期组织演练,提高应对突发事件的能力。同时加强对安 全文化的建设,营造浓厚的安全氛围,提高从业人员的 安全意识和责任感,使安全成为每一个人的自觉行动。

结束语:本文通过对现状的梳理,明确了现存的技术与管理问题。实施优化通风系统、升级安全监控技术、加强两者集成以及深化人员培训和安全文化建设等改进策略,能够显著提升煤矿安全保障能力。未来,煤矿企业需持续关注行业动态,不断改进和完善通风与安全监控体系,严格落实各项安全措施,以确保煤矿生产的长治久安,为煤炭行业的可持续发展奠定坚实基础。

参考文献

[1]陈玉东.矿井通风技术对煤矿安全的影响及应对策略[J].冶金与材料,2024,44(4):43-45.

[2]申玉龙,张健.矿井通风技术对煤矿安全的影响及应对策略分析[J].中文科技期刊数据库(文摘版)工程技术,2024(10):0107-0110.

[3]张丽芳.矿井通风安全监控存在的问题与对策[J].能源与节能,2024(3):317-319、324.

[4]刘洪天.煤矿矿井通风与安全监控存在的问题及对策[J].西部探矿工程,2022,34(4):188-190.