地表水水质在线监测系统的设计与优化研究

黄娟

宁波理工环境能源科技股份有限公司 浙江 宁波 315806

摘 要:全文围绕地表水水质在线监测系统展开研究,阐述系统总体架构、监测站点、水质分析仪等设计内容, 分析传感器、数据采集传输及处理分析等关键技术选型,提出系统性能、集成、智能应用及运维等优化策略。研究成 果为实现地表水环境质量全面、实时监测,提升系统可靠性与实用性提供参考。

关键词: 地表水水质; 在线监测系统; 设计; 优化

引言:随着水环境问题日益严峻,地表水水质监测至关重要。传统监测方式存在实时性差、效率低等不足,难以满足精准化管理需求。在线监测系统凭借自动化、智能化优势成为发展趋势。本文深入研究其设计与优化,旨在构建高效可靠的监测体系,为水环境科学管理与决策提供有力支撑。

1 地表水水质在线监测系统设计

1.1 系统总体架构

地表水水质在线监测系统的总体架构需具备稳定 性、扩展性和高效性,以实现对地表水环境质量的全 面、实时监测。系统主要由监测站点、数据采集与处 理系统、远程监控平台三大部分构成,各部分相互协 作,形成完整的监测体系。监测站点作为系统的"感知 层",分布于不同的地表水区域,负责实时采集水质数 据。这些站点配备各类水质分析仪和传感器,能够对水 温、pH值、溶解氧、化学需氧量、氨氮等多项关键水 质指标进行监测。数据采集与处理系统是连接监测站点 和远程监控平台的"传输纽带",它将监测站点采集到 的原始数据进行初步处理、存储,并通过网络通信技术 将数据传输至远程监控平台。远程监控平台则是系统的 "大脑中枢",管理人员可在此对数据进行深度分析、 可视化展示,实时掌握各监测站点的水质状况,并能远 程控制监测站点的设备,实现对整个监测系统的集中管 理和运维。这种分层架构设计使系统各部分功能明确, 便于后续的维护和升级[1]。当需要增加新的监测指标或扩 展监测范围时,只需在监测站点补充相应的传感器和设 备,对数据采集与处理系统和远程监控平台进行简单的 配置和调试,即可快速实现系统功能的扩展,有效降低 了系统的升级成本和技术难度。

1.2 监测站点设计

监测站点的合理设计是确保监测数据准确性和代表性的关键。在进行监测站点设计时,需综合考虑地表水

的类型、水域功能、污染源分布、水流特征等多种因 素。对于河流监测站点,应设置在上游清洁断面作为对 照断面, 以获取河流的本底水质数据; 在河流流经城 市、工业区等污染源附近设置控制断面,实时监测污染 物对河流水质的影响; 在河流下游设置削减断面, 掌握 污染物经过自净和处理后的最终水质状况。湖泊和水库 的监测站点设置则需考虑其形态、水深、水流方向等因 素,在进水口、出水口、中心区、沿岸区等关键位置布 设监测点,同时根据湖泊和水库的面积和功能分区,合 理确定监测点的数量和密度。监测站点的建设还需注重 设备的安装和防护,水质分析仪和传感器应安装在水流 稳定、便于维护的位置,并采取必要的防护措施,如安 装防护罩、防雷装置等,防止设备受到自然环境和人为 因素的破坏。同时监测站点需配备稳定的供电系统和通 信网络,确保设备能够持续稳定运行,数据能够及时、 准确地传输。

1.3 水质分析仪选型与设计

水质分析仪的选型与设计直接关系到监测数据的准确性和可靠性。在选型时,需根据监测指标的要求,综合考虑仪器的测量范围、精度、稳定性、响应时间、维护成本等因素。对于pH值、溶解氧等常规水质指标的监测,可选用成熟的在线式电极法水质分析仪,这类仪器具有测量快速、准确、稳定性好等优点。而对于化学需氧量、氨氮等综合指标的监测,可采用分光光度法、电化学法等原理的水质分析仪。在选择仪器时,应优先选择具有较高测量精度和良好重复性的产品,以确保监测数据能够真实反映水质状况。在设计方面,水质分析仪应具备自动校准、自动清洗、故障报警等功能。自动校准功能可定期对仪器进行校准,保证测量结果的准确性;自动清洗功能能够清除仪器测量部件表面的污垢和附着物,减少维护工作量;故障报警功能可在仪器出现故障时及时发出警报,并将故障信息传输至远程监控平

台,便于运维人员及时处理。另外,水质分析仪还应具备良好的兼容性,能够与数据采集与处理系统实现无缝 对接,确保数据的稳定传输。

1.4 数据采集与处理系统设计

数据采集与处理系统是整个监测系统的核心环节之 一,它负责将监测站点采集到的原始数据进行采集、存 储、处理和传输。该系统主要由数据采集器、数据存 储设备、数据处理软件等部分组成。数据采集器作为数 据采集的核心设备, 需具备多种通信接口, 能够与不同 类型的水质分析仪和传感器进行连接,实现数据的实时 采集。数据采集器应具有较高的采样频率和数据处理能 力,能够快速、准确地采集和处理大量的监测数据。数 据采集器还需具备数据缓存功能, 在网络通信中断时, 能够将采集到的数据临时存储, 待网络恢复后自动传 输,确保数据不丢失[2]。数据存储设备用于存储采集到 的原始数据和处理后的数据,为了满足数据长期存储和 快速查询的需求,可采用分布式存储技术,将数据分散 存储在多个存储节点上,提高数据存储的安全性和可靠 性。数据处理软件则负责对采集到的数据进行预处理、 分析和计算,如数据滤波、异常值剔除、统计分析等, 将原始数据转化为有价值的信息,并按照规定的格式将 数据传输至远程监控平台。

1.5 远程监控平台设计

远程监控平台是管理人员对整个监测系统进行集中 管理和运维的重要工具, 其设计应注重用户体验和功能 实用性。远程监控平台主要包括数据展示、数据分析、 设备管理、报警管理、系统管理等功能模块。数据展示 模块以直观的图表、地图等形式实时展示各监测站点的 水质数据和设备运行状态,管理人员可通过该模块快速 了解不同区域的水质状况和设备工作情况。数据分析模 块可对历史数据进行深度挖掘和分析, 生成各类统计报 表和趋势图,帮助管理人员掌握水质变化规律,预测水 质发展趋势。设备管理模块用于对监测站点的设备进行 远程配置、控制和维护, 可实现设备的远程升级、校准 等操作。报警管理模块能够根据预设的报警阈值,在水 质数据超标或设备出现故障时及时发出报警信息,并通 过短信、邮件等方式通知相关人员。系统管理模块则负 责对用户权限、系统参数等进行管理,确保系统的安全 性和稳定性。远程监控平台还应具备良好的兼容性和扩 展性, 能够与其他环境监测系统、城市管理系统等进行 数据共享和交互, 为环境管理和决策提供全面的支持。

2 地表水水质在线监测系统关键技术选型

2.1 传感器技术

传感器作为监测数据获取源头,其性能直接影响监测质量。地表水水质监测常用pH、溶解氧、浊度、电导率等传感器。pH传感器多采用玻璃电极法,新型复合电极技术将玻璃与参比电极集成,减少外部干扰,提升测量可靠性;溶解氧传感器中,极谱式通过氧还原反应产电测浓度,荧光法基于荧光猝灭原理,响应快且校准频次低^[3]。随着技术发展,传感器向微型化、智能化、集成化演进。多参数传感器可同时测量pH值、溶解氧等多项指标,节省安装空间与成本,提高监测效率。智能传感器具备自诊断、自校准功能,能实时监测自身状态,及时修复故障,降低运维成本,成为行业发展新趋势。

2.2 数据采集与传输技术

在数据采集方面,除了传统的有线采集方式外,无线采集技术得到越来越广泛的应用。无线传感器网络(WSN)技术通过大量的无线传感器节点自组织成网络,实现对监测区域的全面覆盖和数据采集。这些节点具有低功耗、低成本、易于部署等特点,能够在复杂的环境中实现数据的实时采集和传输。在数据传输方面,常用的通信技术包括GPRS、4G/5G、NB-IoT、LoRa等。GPRS和4G/5G通信技术具有传输速度快、覆盖范围广等优点,适用于对数据传输实时性要求较高的场景;NB-IoT和LoRa技术则具有低功耗、广覆盖、穿透能力强等特点,适用于偏远地区和对功耗要求严格的监测站点。为了提高数据传输的安全性和可靠性,可采用数据加密、冗余传输等技术,防止数据在传输过程中被窃取或丢失。

2.3 数据处理与分析技术

数据处理与分析技术将原始监测数据转化为环境管理决策依据。处理阶段,数据清洗剔除噪声与异常值,数据归一化统一量纲,数据融合整合多源数据,以此提升数据质量与全面性。分析层面,机器学习与人工智能广泛应用。通过历史数据构建水质预测模型,可预判污染趋势;模式识别技术对水质数据分类聚类,识别区域与时段水质特征及污染源。结合大数据分析技术,能快速处理海量数据,挖掘数据深层规律与潜在信息,为环境管理部门制定科学决策提供有力支撑。

3 地表水水质在线监测系统优化

3.1 系统性能优化

系统性能优化旨在提高系统的运行效率、数据处理能力和稳定性。在硬件方面,可升级数据采集器、服务器等设备的硬件配置,提高设备的计算能力和存储容量,以满足大量数据的快速采集和处理需求。同时优化网络通信设备和线路,采用高速、稳定的网络传输技术,减少数据传输延迟和丢包率^[4]。在软件方面,对数据

采集与处理系统和远程监控平台的软件进行优化,改进算法和程序代码,提高软件的执行效率和响应速度。例如,采用多线程、分布式计算等技术,提高数据处理的并行度,加快数据处理速度;优化数据库的索引和查询语句,提高数据的查询和存储效率。定期对系统进行性能测试和评估,及时发现和解决系统存在的性能问题,确保系统始终保持良好的运行状态。

3.2 系统集成与优化

系统集成与优化是将监测系统的各个组成部分进行 有机整合,提高系统的整体协同性和兼容性。在系统集 成方面,实现监测站点设备、数据采集与处理系统、远 程监控平台之间的无缝对接,确保数据能够顺畅传输和 共享。采用标准化的数据接口和通信协议,统一数据格 式和传输规范,消除系统之间的兼容性问题。在系统优 化方面,对系统的功能进行整合和优化,避免功能重复 和冗余。例如,将数据采集与处理系统和远程监控平台 中的数据分析功能进行整合,采用统一的分析算法和工 具,提高数据分析的准确性和一致性。同时优化系统的 操作流程,简化用户操作步骤,提高系统的易用性和用 户体验。

3.3 智能监测技术应用

智能监测技术的应用能够提高监测系统的自动化水平和智能化程度。引入人工智能和机器学习算法,实现对水质数据的智能分析和处理。例如,利用深度学习算法对水质图像进行识别,自动检测水中的藻类、悬浮物等污染物;采用强化学习算法对监测站点的设备运行参数进行优化,实现设备的智能控制和节能运行。另外,结合物联网技术,实现监测设备的智能化管理和运维。通过在设备上安装传感器和通信模块,实时监测设备的运行状态和性能参数,当设备出现故障或异常时,系统能够自动诊断故障原因,并远程发送维修指令,通知运维人员进行处理。同时利用大数据分析技术对设备的运行数据进行分析,预测设备的故障发生时间,提前进行

维护和保养,降低设备故障率和运维成本。

3.4 系统运维与优化

系统运维与优化是保障监测系统长期稳定运行的重要环节。建立完善的运维管理制度,制定详细的设备维护计划和操作规程,定期对监测站点的设备进行巡检、校准和维护,确保设备的正常运行。建立运维人员培训机制,提高运维人员的技术水平和业务能力,使其能够熟练掌握设备的操作和维护方法^[5]。利用远程监控平台对系统进行实时监控和管理,及时发现和处理系统运行过程中出现的问题。建立故障预警机制,通过对设备运行数据和水质数据的分析,提前预测系统可能出现的故障和异常情况,并采取相应的预防措施,定期对系统进行评估和优化,根据实际运行情况和用户需求,对系统的功能和性能进行调整和改进,不断提高系统的可靠性和实用性。

结束语

本研究系统完成地表水水质在线监测系统设计、技术 选型与优化。通过合理架构设计、先进技术应用及多维度 优化,提升系统监测能力与稳定性。未来,随着技术发 展,需进一步融合新技术,完善系统功能,提高监测精 度与智能化水平,更好地服务于水环境监测与保护。

参考文献

[1]刘婷婷,焦卫华,徐万秀,等.水质在线质控仪在地表水水质自动监测中的应用探讨[J].皮革制作与环保科技,2022,3(21):102-104.

[2]郝岩.水环境监测中存在的问题及对策[J].科技创新与应用,2020(03):139-140.

[3]王美香,孙凯.地表水水质监测现状及改善对策[J]. 中国高新科技,2021(13):66-67.

[4]吴束.地表水水质监测现状与对应策略[J].城市建设理论研究,2021(5):73-74.

[5]王艳蝶.地表水水质自动监测系统应用中存在的问题及对策[J].农家参谋,2020,(21):154-155.