Proposal for the assessment of thermal indoor climate based on the thermal acceptability, in addition to the thermal (dis)satisfied.

Paul Roelofsen ( Industrial Design Engineering, Delft University of Technology, Delft, 2628 CE, The Netherlands. )

Peter Vink ( Industrial Design Engineering, Delft University of Technology, Delft, 2628 CE, The Netherlands. )

https://doi.org/10.37155/2811-0730-0201-11

Abstract

For the sake of energy and cost savings, it is sometimes necessary to maintain the indoor climate in a room at conditions that deviate from optimal thermal comfort. More important than thermal sensation is how a change in conditions will affect the thermal acceptability of a space and whether the percentage of people who are (dis)satisfied with the environment will change with regard of the acceptability. The aim of this technical note and arithmetic study is to find out to what extent the thermal indoor climate can be assessed on the basis of thermal acceptability, in addition to the thermal (dis)satisfied, by making use of research that has already been carried out. In addition to the relationship between the percentage of (dis)satisfied and acceptability, attention is paid to how this result relates to current Dutch government building regulations. The paper concerns a proposal for the assessment of thermal indoor climate based on the thermal acceptability, in addition to the thermal (dis)satisfied.

Keywords

Mathematical modelling; Thermal comfort; Thermal acceptability; Environmental indoor quality; Adaptive thermal comfort

Full Text

PDF

References

[1] National Medical Department. Aanbevelingen voor de arbeidsomstandigheden in kantoren en gelijksoortige ruimten voor de huisvesting van Burgerlijk Rijksoverheidspersoneel, 1979.
[2] NEN-EN-ISO-7730, Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria (ISO 7730:2005.IDT), Delft, Zuid Holland: Nederlands Normalisatie Instituut, 2005.
Available from: https://www.iso.org/obp/ui/en/#iso:std:39155:en.
[3] ISSO-74, Thermische behaaglijkheid, 2014.
Available from: https://issuu.com/stichtingisso/docs/issuu_pub_74-2014.
[4] F. Nicol and M. Humphreys. Derivation of the adaptive equations for thermal comfortin free-running buildings in European Standard EN15251. Building and Environment, 2010, 45(1):11-17. https://doi.org/10.1016/j.buildenv.2008.12.013.
[5] NEN-EN-16798-1. Energieprestatie van gebuwen - Deel 1: Invoergegevens voor het binnenklimaat voor ontwerp en beoordeling van energieprestatie van gebouwen met betrekking tot binnenluchtkwaliteit, thermisch binnenklimaat, verlichting en akoestiek, Delft, 2019.
[6] ASHRAE 55-2020. Thermal Environmental Conditions for Human Occupancy, ASHRAE, 2021. Available from: https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-conditions-for-human-occupancy.
[7] L. Berglund. Thermal acceptability, ASHRAE Transactions, vol. 85, pp. 825-834, 1979.
[8] S. Carlucci, S. Erba, L. Pagliano and R. de Dear. ASHRAE Likelihood of Dissatisfaction: a new right-here and right-now thermal comfort index for assessing the Likelihood of Dissatisfaction according to the ASHRAE adaptive comfort model. Energy and Buildings, 2021, 250:1-10. https://doi.org/10.1016/j.enbuild.2021.111286.
[9] F. H. Rohles. Thermal sensations of sedentary man in moderate temperatures. Human factors, 1971, 13(6):553-560. DOI: 10.1177/001872087101300606.
[10] P. Fanger. Thermal Comfort-Analysis and applications in environmental engineering, 2 ed., McGraw-Hill Book Company, 1972.
[11] A. P. Gagge, J. A. Stolwijk and J. D. Hardy. Comfort and thermal sensations and assciated physiological responses at various ambient temperatures. Environmental Research, 1976, 1(1):1-20. https://doi.org/10.1016/0013-9351(67)90002-3.
[12] NEN 5060, Hygrothermische eigenschappen van gebouwen - Referentieklimaatgegevens, Delft: NNI, 2018. Available from: https://www.nen.nl/nen-5060-2018-nl-249783.
[13] H. Kubo, N. Isoda and H. Enomoto-Koshimizu. Cooling effects of preferred air velocity in muggy conditions. Building and Environment, 1997, 32(3): 211-218. https://doi.org/10.1016/S0360-1323(96)00038-8.
[14] P. Roelofsen, K. Jansen and P. Vink. A larger statistical basis and a wider application area of the PMV equation in the Fanger model: application area of the PMV equation. Intelligent Buildings International, 2021, 14: 517-524. https://doi.org/10.1080/17508975.2021.1928595.
[15] R. G. Nevins, F. H. Rohles, W. Springer and A. M. Feyerherm. A temperature-humidity chart for thermal comfort of seated persons. ASHRAE Transactions, vol. 72. I, pp. 283-291, 1966.
[16] M. Roel. Wettelijke eisen en Rgd-richtlijnen voor bouwfysica, Rijksgebouwendienst, Den Haag, 1994.
[17] M. Fountain, E. Arens, R. de Dear, F. Bauman and K. Miura. Locally controlled air movement preferred in warm isothermal environments. ASHRAE Transactions, vol. 100, no. Part 2, 1994. Available from: https://escholarship.org/content/qt0f2524sk/qt0f2524sk_noSplash_0e37a191f9fdaddc42f804658b57da8f.pdf?t=lpz39t.
[18] P. Roelofsen, K. Jansen and P. Vink. A larger statistical basis and a wider application aerea of a re-derived PPD equation in the (NEN-)EN-ISO 7730 model. Intelligent Buildings International, 2022, pp. 1-5. https://doi.org/10.1080/17508975.2022.2028598.
[19] R. de Dear and G. Brager. Developing an adaptive model of thermal comfort and preference, ASHRAE Transactions, 1998. Available from: https://escholarship.org/content/qt4qq2p9c6/qt4qq2p9c6.pdf.
[20] W. Van der Linden, M. Loomans and J. Hensen. Adaptief thermisch comfort verklaard met Fanger-model. TVVL Magazine, 2008, 37(7-8):18-23. Available from: https://deltaohm.lingacms.nl/upload/do_90fj3lks/files/pdf/tvvlfanger.pdf.
[21] L. Yang, S. Gao, S. Zhao, et al. Thermal comfort and physiological responses with standing and treadmill workstations in summer. Building and Environment,2020, 185: 107238. https://doi.org/10.1016/j.buildenv.2020.107238.
[22] International Well Building Institute. Well v2 , Q4 2021 Features/Movement, 2021. [Online]. Available: https://v2.wellcertified.com/en/wellv2/movement. [Accessed 8 February 2022].
[23] R. Dedear and A. Auliciems. Validation of the Predicted Mean Vote model of thermal comfort in six Australian field studies. ASHRAE Transactions, vol. B, pp. 452-468, 1985.
[24] P. Fanger and J. Toftum. Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy and Buildings, 2002, 34(6):533-536. https://doi.org/10.1016/S0378-7788(02)00003-8.

Copyright © 2023 Paul Roelofsen, P. Vink Creative Commons License Publishing time:2023-08-08
This work is licensed under a Creative Commons Attribution 4.0 International License