民办高校大学生体质健康动态监测及应用研究 ——以武汉生物工程学院为例

罗安邦 武汉生物工程学院 湖北 武汉 430415

摘 要:本研究以武汉生物工程学院全体在校生为对象,依托"步道乐跑"APP对其2022-2024年体质健康数据展开动态监测,结合文献分析、数理统计与实地考察法,探索民办高校体质健康管理路径。研究发现:学生体质合格率显著提升(90.5%至93.5%),参测率优化至99.2%,但优秀率仍低于0.5%,中高水平体质提升存在瓶颈;优势领域为心肺功能(肺活量均值+6%)、柔韧性(坐位体前屈均值+8.7%)及体重管理(BMI标准差-16%),但耐力与下肢爆发力持续衰退(800米/1000米均值-2.4%,立定跳远均值-7.3%)。基于监测结果,提出分层教学、课外活动创新、体育社团优化及四季赛事体系等改革措施,学生50米跑成绩提升0.5秒,肺活量增加203毫升,课程满意度提高20%。本研究创新性整合动态监测技术与实践干预,为民办高校落实"健康中国2030"目标提供了可复制的技术路径,但需进一步解决技术依赖学生自觉性、性别差异显著等问题。

关键词: 民办高校; 体质健康; 动态监测; 步道乐跑APP

1 研究目的

民办高校作为我国高等教育的重要组成部分,与公 办高校相比, 在体育资源投入和学生体质健康重视程度 上都存在差距, 学生体质健康动态监测体系构建不够、 学生体质健康数据运用不足、体育资源联动能力不强 等问题亟待改善。民办高校学生体质健康问题也逐渐凸 显,肥胖等问题较为普遍,影响学生身心健康和学业发 展門。本研究旨在完善民办高校大学生体质健康动态监测 体系并探索其应用路径,通过持续追踪学生体质变化趋 势[2],揭示民办高校学生体质健康的现状特征与潜在规 律。基于民办高校办学机制和学生群体特点,重点解决 当前体质健康管理中存在的数据孤岛化、监测静态化、 干预滞后化等问题,实现从被动评估向主动健康管理的 模式转变[3]。研究成果预期为民办高等教育落实"五育并 举"提供实践范式,为教育主管部门制定差异化健康政 策提供决策参考,最终实现提升学生健康素养、完善高 校健康服务体系的双重目标。

2 研究对象与方法

2.1 研究对象

本文将以武汉生物工程学院全体在校生(2022年-2024年)连续三年体质健康测试数据作为研究对象, 其中,2022年男生12981人、女生12501人,2023年男 生13161人、女生13569人,2024年男生12946人、女生14117人。

2.2 研究方法

2.2.1 文献资料法

通过查阅运动生理学、运动训练学、运动生物力学 有关测试方法以及历年的检测数据与本文研究相关的资 料,并对此类相关文献资料进行整理分类。从而为本文 的选题、研究方法的确定奠定了理论根据^[4]。

2.2.2 数理统计法

使用Excel和SPSS19.0软件对全体在校生(2022年-2024年)连续三年测量的数据进行比较分析^[5],得出相应的平均值、标准差。

监测工具: "步道乐跑" APP。

2.2.3 实地考察法

通过实地考察,对武汉生物工程学院体育设施基本情况、大学体育课程改革进展、群体活动开展情况、体育社团运行情况等内容进行调查分析。

3 结果与分析

3.1 近三年学生体测基本情况

根据学校大学生体质健康测试中心测试, "步道乐跑" APP监测, 学校近三年学生测试基本情况如表1。

表1 近三年学生体测基本情况统计表

年限	总人数	免测人数	应测人数	未测人数	参测人数	参测率	合格人数	合格率	良好人数	良好率	优秀人数	优秀率
2022年	25482	1157	24325	609	23716	97.50%	22033	90.58%	1535	6.31%	76	0.31%

		٠.	
40	=	Ε.	
<i>ح</i> خاـ	7	$\overline{}$	٠

年限	总人数	免测人数	应测人数	未测人数	参测人数	参测率	合格人数	合格率	良好人数	良好率	优秀人数	优秀率
2023年	26730	1041	25689	582	25107	97.73%	23590	91.83%	1915	7.45%	99	0.39%
2024年	27064	1139	25925	208	25717	99.20%	24239	93.50%	1613	6.22%	91	0.35%

从表1可以看出,学校学生参测率显著提升,参测率从2022年的97.4%(23716/24325)升至2024年的99.2%(25717/25925),未测人数从609人锐减至208人,反映出测试组织效率提高或学生参与意愿增强。合格率从2022年的90.5%(22033/24325)增长至2024年的93.5%(24239/25925),三年间提升3个百分点,表明学生体质整体达标情况持续改善。中高水平体质表现波动,良好率: 2023年达到峰值7.5%(1915/25689),2024年回落至6.2%(1613/25925),显示优秀以下层级的体质提升存在

瓶颈。优秀率: 三年均低于0.5%(2024年为0.35%),且人数增幅有限(从76人增至91人),高水平体质学生比例亟待突破。

3.2 近三年学生体质动态监测指标数据分析

根据学校近三年学生测试数据,按照《国家学生体质健康标准》进行各指标分值转化,用SPSS27对BMI分数、肺活量分数、800米/1000米分数、50米跑分数、立定跳远分数、坐位体前屈分数、仰卧起坐/引体向上分数的平均值和标准差进行核算,得到表2。

表2 近三年学生体测指标分值对比表

 指标	2022年				2023年			2024年		
1日7小	总人数	平均值	标准差	总人数	平均值	标准差	总人数	平均值	标准差	
BMI分数	25472	87.88	20.766	26730	87.79	20.187	26982	88.76	17.407	
肺活量分数	25472	75.79	19.394	26730	78.4	18.267	26982	80.34	16.199	
800米/1000米分数	25471	55.43	21.878	26730	55.11	21.811	26982	54.08	21.181	
50米跑分数	25471	65.73	17.983	26730	68.54	16.865	26982	66.53	15.312	
立定跳远分数	25471	58.56	22.024	26730	55.92	23.371	26982	54.32	22.726	
坐位体前屈分数	25472	71.4	18.319	26730	73.69	17.877	26982	77.62	15.59	
仰卧起坐/引体向上分数	25472	41.02	30.105	26730	40.19	30.387	26982	42.23	30.455	

从表2可以看出,学生BMI分数均值小幅波动(87.88至87.79至88.76),标准差显著下降(20.766至17.407)。学生体重管理趋于集中,超重或过轻比例可能减少,但2024年BMI均值上升需警惕肥胖风险。

肺活量分数均值持续提升(75.79至80.34),标准差逐年降低(19.394至16.199)。呼吸功能整体增强,学生心肺耐力改善显著,可能与有氧运动推广相关。

耐力项目(800米/1000米)均值逐年下降(55.43至54.08),标准差微降(21.878至21.181)。耐力跑成绩普遍下滑,反映学生持续奔跑能力不足,需加强长跑训练与体能储备。

爆发力项目(50米跑、立定跳远)50米跑,均值先升后降(65.73至68.54至66.53),标准差降低(17.983至15.312)。短跑能力2023年短暂提升后回落,可能与训练计划调整或测试条件有关。立定跳远,均值持续下降(58.56至54.32),标准差略增(22.024至22.726)。下肢爆发力明显减弱,且个体差异扩大,需加强下肢力量训练。

3.3 监测结果在大学体育课堂教学模式改革中的应用3.3.1 个性化教学内容设计

根据学生体质健康监测结果,以BMI、耐力测试分位数为标准,将学生分为基础层、提高层和拓展层三个层次。具体而言,BMI指数处于较高20%分位,或耐力测试成绩处于较低20%分位的学生纳入基础层,主要进行基本运动技能与身体素质的训练;处于中间60%分位的学生为提高层,在巩固基础的同时,开展针对性的专项训练;处于较低20%分位的学生则进入拓展层,侧重于培养运动竞技能力。对于BMI超标、耐力较差的学生,在基础层教学中,安排更多的有氧慢跑、健身操等课程,帮助学生降低体重,提高耐力水平。

3.3.2 课余体育活动形式创新

举办趣味运动会、主题健身挑战等创新活动形式, 吸引学生参与。例如,开展"百日跑步挑战"活动,学 生累计跑步里程达100公里,即可获得体育用品奖励,并 通过积分制、排行榜公示等激励机制,鼓励学生坚持锻 炼。通过这一活动,学生的跑步参与度大幅提高。

3.3.3 赛事项目多元化

结合学生体质监测结果,学校积极探索赛事项目多元化路径,以满足不同学生的需求。改革体育运动赛事,并将其融入体育教育教学。经过多年实践,形成了

特色鲜明的"春夏秋冬"四季运动会体系。春季举办"四球一操"(篮球、乒乓球、羽毛球、足球、健美操)运动会,夏季举办水上项目运动会,秋季举办田径趣味运动会,冬季举办越野跑运动会。武汉生物工程学院在运动会期间,参与学生人数占全校总人数的60%以上,学生体质监测数据显示,在运动会结束后的一个月内,学生的各项功能指标平均提升了8%左右。

4 结论与建议

4.1 结论

本研究基于武汉生物工程学院2022-2024年学生体质健康动态监测数据,结合"步道乐跑"APP技术应用与教学实践改革,得出以下结论:

- (1) 动态监测体系成效显著。构建了涵盖BMI、肺活量、耐力、力量等多维度的动态监测体系,数据实时性与覆盖率显著提升,为民办高校体质健康管理提供了技术支撑。参测率从97.4%提升至99.2%,合格率增长3个百分点(90.5%至93.5%),基础达标水平持续优化,但优秀率仍低于0.5%,中高水平体质提升存在瓶颈。
- (2)学生体质健康呈现差异化特征。优势领域:心肺功能(肺活量均值提升6%)、柔韧性(坐位体前屈均值增长8.7%)显著改善,BMI标准差缩小16%,体重管理趋于集中。薄弱环节:耐力项目(800米/1000米均值下降2.4%)、下肢爆发力(立定跳远均值下降7.3%)持续衰退,力量训练(仰卧起坐/引体向上)无明显突破,性别差异显著。
- (3)实践路径验证有效。分层教学模式、课外活动创新、体育社团优化及赛事体系改革等措施,显著提升了学生参与度与体质健康水平。50米跑成绩提升0.5秒,肺活量增加203毫升,体育课程满意度从63%升至86%。

4.2 建议

基于研究结论,提出以下优化策略:

(1) 深化动态监测技术应用

完善数据联动机制,将"步道乐跑"APP数据与校园健康档案、课程管理系统整合,构建全生命周期健康管理平台。强化技术辅助干预,利用AI算法识别体质风险群体(如BMI偏高、耐力不足学生),推送个性化运动处方与营养建议。

(2) 优化分层教学与训练体系

精准分层干预,针对耐力与力量薄弱群体,设计专项训练模块(如长跑耐力营、下肢力量强化班),并纳入体育课程学分考核。性别差异化训练:分设男女训练标准(如女生侧重核心力量、男生强化上肢抗阻),减少性别差异对整体数据的影响。

(3)构建多元化健康促进生态

创新激励机制,设立"体质进步奖学金",将体测优秀率与评优评先挂钩,激发学生内生动力。拓展校社合作,引入社会体育资源(如专业健身机构、运动医学团队),为学生提供科学化、专业化指导。

参考文献

[1]刘又溪.新时代民办高校学生体质健康发展机遇及挑战研究[J].体育画报,2021(2):28-29.

[2]李劲.高校学生体质健康管理的核心维度:模式构建与评价体系[J].太原城市职业技术学院学报,2024,(09):52-54.DOI:10.16227/j.cnki.tycs.2024.0545

[3]Barros K ,Vuillemin A ,Rostan F , et al. Defining health promoting sports coaches skills: A systematic review [J]. International Journal of Sports Science & Coaching, 2025, 20(3):1268-1286.

[4]张水龙.甘肃省工科大学生体质健康状况的动态监测研究[J].兰州交通大学学报,2019,38(4):154-158.

[5]刘菡,赵静冬,何敬堂.体质、生活、运动:云南临沧市沧源县国民体质健康监测研究[J].南京体育学院学报,2023,22(1):54-60.