电力监控系统在供配电设计中的应用分析

王宗伦

中国石油工程建设有限公司华北分公司 河北省 任丘市 062552

摘 要: 电力监控系统是现代化电力行业发展的重要基础,在供配电设计工作开展的阶段中,需要明确电力资源的使用效果,提升电网建设工作的效率和质量,降低电力系统运行成本的不断提升。目前,我国正在积极地建设电力系统,为社会电力资源的基本使用提供保障。本文主要对电力监控系统在供配电设计中国的应用进行分析,希望能够对今后电力行业的发展提供保障。

关键词: 电力监控; 监控系统; 供配电设计; 设计应用; 系统应用

供配电是电网建设的主要内容,在电力资源供应中有着重要的作用,也能在一定程度上对各种能源和资源进行节约利用。在新时代各种先进技术的不断应用个发展背景下,有效地对电力监控系统进行利用,加强对电力监控系统的管理和控制,重点对供配电运行状态、运行质量的数据进行分析,及时发现设备中存在的故障和安全隐患,进而提升供配电运行的质量,保障企业经济效益的全面提升。

1 电力监控系统的基本概述

现代化电力监控系统在实际应用的过程中,主要会采用电子技术、计算机网络技术、现代化控制技术、智能化技术等多种较为先进的技术类型,保证电力监控系统能够实现远程监督管理与控制、数据采集与记录、数据整理与分析、远程通信与调控等多种功能,保证功能一体化的融合,让电力系统运行更加具有透明化的效果,提升电力系统智能性、安全性、可靠性与经济性的有效提升。

电力监控系统的数据采集功能主要可以包括以下几个方面的内容,本文在此进行简要的分析与阐述。首先,加强电力监控系统的应用,对电力模拟量进行采集和统计,保证开关采集的效果和质量。其次,电力监控系统能够对电能进行有效的计算,其中模拟量的采集包括直流采集与交流采集两种模式,主要是对电压、电流、电线、功率等多种信息数据进行采集,保证采集数据的准确性和有效性,减少电力资源工作开展中出现各种故障问题,影响电力资源供应的稳定性和安全性,保障故障信息采集的全面性和有效性,减少计算误差问题

通讯作者: 王宗伦 出生年月: 1994.01 民族: 汉 性别: 男籍贯: 河北任丘 单位: 中国石油工程建设有限公司华北分公司 职位: 供配电设计 职称: 助理工程师 学历: 本科邮编: 062552 研究方向: 电气设计

的产生

电力监控系统数据记录功能主要是对断路器的分合 状态以及保护状态进行记录,要求系统中具备足够内容 空间,对大量数据信息进行长期有效地记录和存储。同 时,电力监控系统数据记录功能还需要对故障信息进行 记录,对故障发生后的实时电流情况进行研究,进一步 提升数据分析的有效性和精准性。因此,数据记录功能 能够对保护装置运行状态进行记录,降低故障信息产生 后造成的影响,精准地对故障信息数据以及故障产生位 置进行反应,为工作人员的维修检测效果提供保障。

电力检测系统的远程操控主要包括远程监视、通信、调控等多种基本环节,能够加强电力系统的远程控制效果,保证工作人员可以对多种电压信息进行观测,对系统故障问题进行改善,及时对保护设施的运行状态进行评估,方便工作人员对开关等基础设备进行操控,降低工作量的基础上,提升工作开展的效率。在供配电设计的阶段中,不仅需要保证电力监控系统的全面建设,还需要对操作系统进行设计,在电力监控系统故障问题发生之后,可以使用人工频道进行处理[1]。

简单来说,电力监控系统能够保障电力系统正常、稳定地运行,为工作人员带来更加便利的操控条件。为了能在新时代的发展下,实现电力行业长久稳定的发展,就需要在供配电设计中加强电力监控系统的有效应用。不断对存在的问题进行改善和优化,进而实现行业的稳定进步与发展。

2 电力监控系统的基本特性

由于电力监控系统自身具有较强的稳定性,能够为 供配电设计提供有效的支持,针对监控系统在运行过程 中展现的优势进行分析可以发展,电力监控系统具备较 强的稳定性、灵活性、先进性、保密性等基本优势,本 文主要针对常见的四种优势进行分析,希望能对今后电 力监控系统的应用提供保障。

2.1 稳定性特征

在电力监控系统应用的阶段中,嵌入式是系统的基本特点,并且系统也具备较强的稳定性特点,通过此类型的特点,可以将监控信息进行全面整理,加强信息传输到额稳定性,不断对信息进行压缩,还需要通过信息模拟自动对外界干扰信号,建立较为稳定的监控系统。通过研究可以发现,监控系统信息参数运行的稳定程度,要比其余程度更高,主要是因为监控系统信息主要是对芯片进行利用,逐渐形成频率信号较高的系统,确保各类数据信息传输的安全性和稳定性。

2.2 灵活性特征

监控系统运行主要是在计算机技术的基础上,将各种功能软件进行使用,监控系统自行发掘软件,保证信息数据更新的效果,利用网络基础功能,确保软件升级、更新的快速性,因此监控系统必须要确保软件更新的灵活性能,这样才能够紧跟网络发展的速度,为供配电设计提供进一步的保障,加强多方监控的一体化效果,突破传统地域问题产生的限制。通过监控系统,不仅能够对供配电信息进行处理,加强监控系统功能化的效果,还能够确保电力供应系统的安全与稳定^[2]。

2.3 先进性特征

为了能够确保电力资源供应的质量,不仅需要加强监控系统的全面应用,还需要在系统中加入较为先进的权健,确保各种数据的计算效果,对供配电产生的数据进行压缩,提升画面质量。在系统进入监控状态的时候,能够确保系统提供较为优质的画面,尽可能将清晰的监控画面反馈到显示设备商,因为中心软件系统自身不会占据大量的系统空间,还能够为信息的运行提供较为宽阔的服务质量,通过实际的运行效果可以发现,监控画面不仅能够对设备静态运行进行控制,还能够对设备的动态运行效果提供保障。监控系统的先进性能在很大程度上提升画面质量,确保数据信息压缩的质量,给管理人员提供更加清晰的视觉画面,提升供配电的监控效果。

2.4 保护性特征

监控系统在实际运行的过程中,需要对单独IP进行控制,为系统提供单一的质量保障,工作人员可以针对IP权限,对单独监控系统进行操作与控制,加强系统监控以及访问的保密权限效果,避免信息泄漏问题的产生。同时,工作人员还可以单独设置访问密码,加强信息的访问权限。

3 电力监控系统在供配电设计中的应用

电力监控系统不仅需要加强监控的效果和质量,还

需要确保监控系统具备较强的通信技术能力,方便电力资源的信息采集、传输和整理,将电力数据信息应用到供配电中,保证系统设计的稳定性,一方面能够加强供配电运行的监控效果,另外一方面能够降低故障发生的概率,因此加强电力监控系统在供配电设计中的应用,是实现电力企业长久稳定发展的重要基础^[3]。

3.1 实现人机交互的目标

电力监控系统能形成清晰、高质量的操作界面,为 供配电工作人员提供更加便捷地操控界面,在界面中阅 读语音需要设定为中文,确保工作人员能够对界面中的 内容进行直接掌控与了解,还能实现统一的操作效果, 避免出现操作混乱的问题。并且监控想通需要针对更新 界面进行改善,将各种数据信息快速进行现实,积极地 为用户提供不同类型的操作界面和操控效果,界面上还 需要以较为常规的显示方法,对供配电的运行状况进行 显示。在供配电监控系统运行中,对各种数据情况以及 处理状态进行显示,通过监控系统的应用界面,为工作 人员实际工作提供更加便利的基础条件,降低故障问题 产生的概率,更好的帮助工作人员了解供配电设备运行 的实际状况。

3.2 提升权限管理的效果

权限主要严格控制供配电的供应环境, 保证供配电 的安全性, 在实际工作开展的阶段中, 通过电力监控系 统的应用,保证供配电加密设计的效果,保证数据信息 处理的效果和质量。首先,在设计工作开展的阶段中, 需要利用监控系统对权限进行设置,保证权限设置的效 果和质量,加强监控系统层次权限的等级划分,从而更 好地满足不同级别人员的实际需求。在设计工作开展的 阶段中,需要保证权限等级的分划分效果,按照高权限 涵盖低权限的基本原则,避免现代权限的越级处理权 限,需要对供配电工作人员的工作范围进行确定,避免 出现信息泄漏的情况出现,提升信息数据保密的程度。 其次,对于监控系统的设计来讲,需要加强系统后台操 控的质量,方便供配电人员对设计信息进行修改,及时 发现供配电设计中存在的异常问题, 及时登录后台系 统,对数据信息进行调整,更好地实现供配电系统的运 行质量[4]。

3.3 提升供配电信息采集的效率和质量

通过电力监控系统的有效使用,提升供配电信息数据的采集效率和质量,加强数据信息的实时监督、控制效果,保证供配电数据信息的准确性和有效性。在数据采集的过程中需要保证各项参数的全面性,通过不同性质的仪表仪器,在信息数据采集完成后,利用监控系统

对数据采集和分析的特点,加强数据的全面现实,更好的减少数据误差和缺失现场的出现。因此,在监控系统应用的背景下,供配电可以及时地对各种需求信息进行处理、采集和应用,从中得到有效的数据结果,利用监控系统的各项数据内容,保障数据的时效性和准确性,避免用户在对电力资源应用过程中,对各项数据信息产生较强的疑惑。

3.4 对供配电事件发生情况进行记录

供配电设计工作开展的阶段中,需要对重点事件进行记录,做好相关顺序的存储工作,保证在数据存储的过程中,有未知空间的预留效果。因此,加强供配电设计的难度,通过监控系统对可能会发生或者已经发生的事件进行动态监控,保证各项数据的监控效果。在记录的过程中无需在乎顺序性,只需要加强空间的预留效果,以此来保障数据信息存储的整体效果^[5]。

3.5 建立供配电设计的数据库

数据库作为供配电设计的核心内容,大量的数据内容都需要从数据库中进行提取,保证数据库内部信息的全面性和完善性。在数据库设计的阶段中,设计人员需要对数据库内部的信息进行分类整理,保障数据库信息的运行效果,以此来作为监控系统运行的重要基础。在数据库运行的阶段中,需要对数据库内部模块进行建设,保障数据处理后能够自动进行存储,加强数据存储的整体质量,工作人员可以通过数据库内部的检索模块,对供配电信息进行查询,结合供配电实际的情况,加强数据整理的质量,保证数据信息的有效性,加强信息管理的质量,为实际工作的开展提供良好的基础与保障。

3.6 实现远程查询的目标

监控系统的有效使用,需要保证信息处理的多样性效果,确保数据存储、组合的效果,并且根据供配电的实际效果,生成相对应的报表,加强数据信息的针对性和有效性。在数据处理和整理完成之后,需要以远程传输的方式,将报表进行传输,工作人员可以利用查询的方式,对有效的数据信息进行搜索,为后续工作的开展奠定基础与保障。通过电力监控系统,还能够进一步保障数据信息的有效性,为供配电提供更加充实的信息数据,满足供配电的信息需求^[6]。

3.7 加强数据采集和处理效果

供配电系统的建设中,数据信息是支持系统运行质

量的重要基础和保障,加强数据采集和处理的效果,是电力监控系统运行的基础,也是保障供配电设计应用的前提条件。因此,在供配电设计工作开展的阶段中,设计人员需要加强数据采集和处理的效果,这也是设计工作的重点内容。电力监控系统通过仪器仪表对数据进行采集,数据通过本地的仪器仪表进行现实,在提升远程设备运行状态的基础上,对数据进行快速的整理和统计。数据采集之后,工作人员需要及时对各项数据进行处理,加强数据信息分析、记录和存储的效果,将采集的数据存入到数据库中,这样不仅能够为工作人员实际工作提供便利条件,还能够方便用户对各项数据信息的快速查询,这样也是提升工作开展的重要基础^[7]。

结束语:随着现阶段时代不断进步和发展的背景下,电力行业为了能够更好地实现行业的稳定进步和发展,就需要加强各种设备的有效应用。电力监控系统作为现阶段较为常见的系统类型,在供配电设计工作中,加强电力监控系统的有效应用,对我国供配电行业的稳定性和稳定性有着决定性的作用,也是实现行业稳定进步的重要基础。在供配电系统出现故障问题质量,电力检测系统能够根据自身的各种功能,对问题进行处理与改善,这样不仅能够提升数据信息处理效率、效果和质量,还能够降低供配电设备后续故障问题的产生,减少事故发生后财产的损失。

参考文献:

[1]黄宇新. 电力监控系统在供配电设计中的应用分析 [J]. 电子世界, 2021(19):2.

[2]李鹏飞. 电力监控系统在供配电设计中的应用[J]. 轻松学电脑, 2021(000-007).

[3]杨志亮. 电力监控系统在供配电设计中应用的探讨[J]. 城市建设理论研究(电子版), 2020, No.323(05):6-6.

[4]杨志亮. 电力监控系统在供配电设计中应用的探讨[J]. 城市建设理论研究(电子版), 2020, No.323(05):6-6.

[5] 艳春 成. 电气自动化技术在供配电系统中的应用探析[J]. 水电科技, 2020, 3(3).

[6]卜伟,方键潮. 对于供配电设计中电力监控系统的探讨[J]. 电力设备管理, 2022(000-009).

[7]孙平清. 供配电设计中电力监控系统的作用分析 [J]. 市场调查信息, 2021, 000(005):P.1-1.