汽车发动机橡胶悬置的振动分析与结构优化

罗凯

陕西德信零部件集团有限公司 陕西 西安 710200

摘 要:本文旨在深入研究汽车发动机橡胶悬置的振动特性,并在此基础上提出结构优化策略。文章首先介绍了橡胶悬置的振动分析理论基础,包括橡胶材料的力学特性、动力学模型以及振动分析方法。接着,对橡胶悬置的振动特性进行了详细分析,涉及频率响应特性、阻尼特性以及刚度特性。最后,提出了结构优化策略,包括材料优化、形状优化以及智能控制技术的应用。本研究为提高汽车橡胶悬置的减振性能提供了理论支撑和优化方向。

关键词: 汽车发动机; 橡胶悬置; 振动分析; 结构优化

引言

汽车发动机橡胶悬置作为连接发动机与车架的重要部件,对减少振动传递、提高乘坐舒适性具有重要意义。振动问题不仅影响汽车性能,还可能导致零部件疲劳损坏。因此,研究橡胶悬置的振动特性及结构优化策略具有重要意义。本文旨在通过理论分析、数值模拟等方法,为橡胶悬置的设计和优化提供指导。

1 汽车发动机橡胶悬置振动分析理论基础

1.1 橡胶材料的力学特性

橡胶材料, 以其独特的力学特性, 在汽车工业中扮 演着不可或缺的角色。其最为显著的两大特性——非 线性弹性和阻尼特性,为橡胶悬置提供了卓越的减振性 能。深入探讨非线性弹性,我们可以发现,橡胶在受到 外力作用时,其变形并不遵循传统的虎克定律。换言 之,橡胶的刚度并不是恒定的,而是随着载荷的变化而 变化。这种特性使得橡胶悬置能够在不同的工作条件 下,提供恰到好处的支撑与缓冲。例如,在高速行驶 时,橡胶悬置能够变得更硬,以提供稳定的支撑;而在 低速或颠簸路面时,它又能够变得更软,以吸收更多的 振动。再来看阻尼特性,这是橡胶材料的另一大法宝。 阻尼,即材料在受到振动时能够吸收并消耗能量的能 力。橡胶的高阻尼特性意味着它能够在振动过程中,将 机械能转化为热能,从而迅速衰减振动。这一特性对于 汽车而言至关重要, 因为它能够有效隔离发动机产生的 振动和噪音, 为乘客提供一个更加舒适、安静的乘车环 境。橡胶材料的非线性弹性和阻尼特性共同构成了其卓 越的减振性能。这也是为什么在汽车工业中, 橡胶悬置 被广泛应用于发动机、底盘等关键部件的减振与支撑。

1.2 橡胶悬置的动力学模型

在深入研究橡胶悬置的振动特性时,一个准确而简 化的动力学模型是不可或缺的。为了更有效地捕捉橡胶 悬置在复杂环境中的动态响应,通常采用集中质量模 型作为其动力学行为的描述。集中质量模型的核心思想 是将橡胶悬置的质量、刚度和阻尼等关键属性集中于一 个或几个点上,从而简化了分析过程。这种模型不仅易 于理解,而且在很多情况下都能提供足够精确的结果, 使得工程师能够快速评估橡胶悬置的性能。在建立动力 学方程时, 刚度是一个至关重要的参数。它决定了橡胶 悬置在受到外力时产生的变形程度,直接影响着振动的 传递效率。同时, 阳尼也是不可忽视的因素, 它反映了 橡胶悬置在振动过程中消耗能量的能力,对于控制系统 的稳定性和响应速度至关重要。除了刚度和阻尼, 外界 激励也是动力学方程中必须考虑的因素。汽车行驶过程 中,发动机产生的振动、路面不平整等因素都会对橡胶 悬置产生激励作用,这些激励的频率和幅值直接影响着 橡胶悬置的振动响应[1]。通过集中质量模型描述橡胶悬置 的动力学行为,我们能够更加深入地理解其振动特性, 为后续的结构优化和性能提升提供有力支持。

1.3 振动分析方法

在橡胶悬置的振动分析领域,理论解析方法和数值 模拟方法构成了两大核心的分析手段。这两种方法各有 千秋,互为补充,共同揭示着橡胶悬置在振动环境下的 行为特性。理论解析方法,作为经典的分析途径,依赖 于对动力学方程的精确求解。它通常基于一系列简化的 假设,将复杂的振动系统抽象为易于处理的数学模型。 通过这种方法,我们可以获得系统振动的解析解,从而 直观地理解其频率响应、模态分布等关键特性。然而, 理论解析方法的局限性在于,它往往难以处理具有复杂 几何形状、非线性材料特性或复杂边界条件的振动问 题。相比之下,数值模拟方法则显得更为灵活和强大。 它借助于现代计算机技术的强大计算能力,能够对几乎 任意复杂的振动系统进行高精度的模拟分析。通过离散 化连续系统、构建数值模型并求解相应的数值方程,数值模拟方法能够捕捉到系统振动的每一个细微变化。这种方法不仅可以处理线性振动问题,还能轻松应对非线性、瞬态、随机振动等复杂情况。因此,在橡胶悬置的振动分析中,数值模拟方法往往能够提供更为全面和深入的信息。理论解析方法和数值模拟方法各有优势,应根据具体问题的特点和需求选择合适的方法进行分析。在实际应用中,将两种方法相结合往往能够获得更为准确和全面的结果,从而更好地指导橡胶悬置的设计和优化。

2 汽车发动机橡胶悬置振动特性分析

2.1 频率响应特性

深入探讨橡胶悬置的振动特性, 频率响应特性是其 中一个不可或缺的重要方面。这一特性主要通过振幅-频 率关系和相位-频率关系来体现,为我们揭示了橡胶悬置 在不同频率下的振动表现。在振幅-频率关系中, 我们可 以观察到, 随着激励频率的变化, 橡胶悬置的振动幅度 也会发生相应的改变。特别是在共振频率附近,振幅会 显著增大,形成一个明显的峰值。这是因为在共振频率 下,橡胶悬置的振动系统与外部激励的频率相匹配,导 致振动能量被有效放大。与振幅-频率关系紧密相连的是 相位-频率关系。相位,作为振动波形的一个重要特征, 描述了振动信号在不同时间点上的相对位置。在橡胶悬 置的振动过程中,相位同样会随着激励频率的变化而发 生改变。特别是在共振频率附近,相位会发生突变,这 意味着振动波形的形态发生了显著的变化。针对这些频 率响应特性,我们可以通过优化橡胶悬置的刚度和阻尼 来降低共振峰值,拓宽隔振频带。刚度和阻尼是影响橡 胶悬置振动性能的关键因素。通过调整这些参数,我们 可以改变橡胶悬置的固有频率和阻尼比, 从而使其更好 地适应不同的振动环境,提高隔振效果。频率响应特性 是橡胶悬置振动特性中的重要组成部分。通过对这一特 性的深入研究和分析, 我们可以为橡胶悬置的优化设计 提供有力的理论支持和实践指导。

2.2 阻尼特性对振动的影响

阻尼,作为振动系统中的一种能量耗散机制,直接影响着振动的衰减速度和共振峰的形态。阻尼比,作为衡量阻尼大小的指标,反映了振动衰减的快慢。具体来说,阻尼比越大,振动能量在传递过程中被消耗的速度就越快,振动衰减也就越快。这一特性对于减少振动对汽车其他部件的影响、提高乘坐舒适性具有重要意义。除了影响振动衰减速度外,阻尼还对共振峰产生显著影响。在振动系统中,共振峰是振幅随频率变化而出现的极大值点。阻尼的存在会使得共振峰的峰值降低,同时

频带也会拓宽。这意味着在共振频率附近,振动幅度不会无限增大,而是受到一定的限制。这一特性有助于提高橡胶悬置的隔振效果,保护汽车其他部件免受共振破坏。提高橡胶悬置的阻尼性能对于改善其振动特性具有重要意义^[2]。在实际应用中,我们可以通过优化橡胶材料的配方、改进悬置结构等方式来提高阻尼性能。这些措施将有助于提升橡胶悬置的隔振效果、增强汽车的稳定性和舒适性。

2.3 橡胶悬置的刚度特性

橡胶悬置的刚度特性在振动分析中占据着举足轻重 的地位。刚度,作为材料或结构在受力时抵抗变形的能 力,直接决定了橡胶悬置在承受载荷时的变形行为。值 得注意的是,橡胶悬置的刚度并非线性,而是随着载荷 的增加而逐渐增大。这种非线性刚度特性使得橡胶悬置 在不同载荷下表现出不同的振动响应, 为振动控制提供 了更多的可能性。刚度对振动传递率的影响尤为显著。 一般来说, 刚度越低, 橡胶悬置的隔振效果越好。这是 因为低刚度悬置在受到相同振动激励时, 能够产生更大 的变形,从而更有效地吸收和隔离振动能量。然而,刚 度并非越低越好。过低的刚度可能导致悬置稳定性降 低,甚至引发其他振动问题。在设计橡胶悬置时,需要 合理匹配刚度和阻尼。阻尼的存在可以消耗振动能量, 减少振动传递,与刚度共同影响着橡胶悬置的振动特 性。通过优化刚度和阻尼的组合,可以实现更好的隔振 效果和稳定性。橡胶悬置的刚度特性是影响其振动特性 的关键因素之一。在设计和应用中,需要充分考虑刚度 的非线性特性及其对振动传递率的影响, 以实现橡胶悬 置的最佳振动控制效果。

3 汽车发动机橡胶悬置结构优化策略

3.1 材料优化

在橡胶悬置的结构优化中,材料优化是至关重要的一环。随着材料科学的不断发展,新型橡胶材料的涌现为橡胶悬置的性能提升带来了无限可能。高阻尼橡胶,作为一种具有优异阻尼性能的新型橡胶材料,能够有效吸收和消耗振动能量,从而显著降低振动传递。将其应用于橡胶悬置中,不仅可以提高悬置的隔振效果,还能增强汽车的乘坐舒适性和稳定性。纳米复合橡胶则是另一种具有广泛应用前景的新型橡胶材料。通过纳米技术将纳米填料均匀分散在橡胶基体中,可以显著改善橡胶的力学性能、热稳定性和耐老化性能。这种材料在承受大载荷和高温环境下仍能保持良好的性能,非常适合用于制造高性能的橡胶悬置。除了探索新型橡胶材料外,优化材料配方和硫化工艺也是提高橡胶悬置性能的关键

途径。通过调整橡胶配方中的各组分比例和添加剂种类,可以进一步优化橡胶的刚度、阻尼和耐久性等性能。同时,采用先进的硫化工艺可以控制橡胶的交联程度和结构形态,从而获得更加优异的力学性能和稳定性^[3]。材料优化对于提升橡胶悬置的性能具有重要意义。在未来的研究中,我们应继续关注新型橡胶材料的研发和应用,以及材料配方和硫化工艺的优化创新。通过这些努力,我们有望为汽车工业提供更加高性能、高可靠性的橡胶悬置产品。

3.2 形状优化

在橡胶悬置的结构优化策略中,形状优化是一种非 常有效的方法。传统的橡胶悬置设计往往注重其功能性 和耐久性,但在形状上可能存在一些局限性。通过改 进橡胶悬置的几何形状, 我们可以进一步优化其刚度和 阻尼分布,从而提高隔振性能。非对称结构是一种常用 的形状优化方法。传统的橡胶悬置往往采用对称设计, 但在实际应用中,由于汽车发动机的振动特性以及悬置 安装位置的限制,对称结构可能并不是最优选择。通过 采用非对称结构,我们可以更好地匹配橡胶悬置在不同 方向上的刚度需求,从而提高其隔振效果。变截面设计 也是一种有效的形状优化方法。传统的橡胶悬置截面形 状往往是均匀的, 但在实际应用中, 由于受力情况的不 同,均匀截面可能并不是最优选择。通过采用变截面设 计,我们可以根据受力情况调整截面形状和尺寸,从而 实现刚度和阻尼的最优分布。除了上述两种方法外,还 可以通过其他形状优化手段来改进橡胶悬置的性能。例 如,通过增加加强筋或改变悬置的壁厚分布等方式,可 以进一步提高橡胶悬置的承载能力和稳定性[4]。形状优化 对于提高橡胶悬置的隔振性能具有重要意义。在实际应 用中,我们可以根据具体需求和条件选择合适的形状优 化方法,并结合材料优化等其他策略来实现橡胶悬置性 能的最优化。

3.3 智能控制技术的应用

在现代汽车技术中,智能控制技术已经成为提升橡胶悬置性能的关键手段。传统橡胶悬置的刚度和阻尼往往是固定的,但在复杂多变的行驶环境中,这种固定性能可能无法满足所有情况下的隔振需求。因此,引入主

动与半主动控制技术变得尤为重要。主动控制技术利用 外部能源,如压电材料,来实现对橡胶悬置性能的实时 调控。压电材料在受到机械变形时会产生电势, 反之, 当施加电场时也会产生机械变形。利用这一特性,我们 可以根据振动情况实时调整橡胶悬置的刚度和阻尼,以 达到最佳的隔振效果。半主动控制技术则通过改变橡胶 悬置内部的结构或状态来实现性能调控。例如, 磁流变 液是一种在外加磁场作用下可以改变其流变特性的智能 材料。将磁流变液引入橡胶悬置中,可以通过改变磁场 强度来实时调整悬置的阻尼特性,从而适应不同的振动 环境。除了控制技术的应用,研究控制策略与算法也是 提高橡胶悬置性能的关键。通过采集和分析车身振动信 号,我们可以判断当前的振动环境并预测未来的振动趋 势。基于这些信息,控制策略可以实时调整橡胶悬置的 刚度和阻尼,以最大限度地减少振动传递,提高乘坐舒 适性。智能控制技术在橡胶悬置结构优化中发挥着重要 作用。通过引入主动与半主动控制技术,并结合先进的 控制策略与算法,我们可以显著提高橡胶悬置对复杂振 动环境的适应能力。

结语

本文通过对汽车发动机橡胶悬置的振动特性进行深入分析,提出了结构优化策略。研究发现,通过优化橡胶材料、改进几何形状以及应用智能控制技术,可有效提高橡胶悬置的减振性能。本研究为橡胶悬置的设计和优化提供了理论支撑和指导方向,以期对未来研究起到一定的参考价值。

参考文献

[1]贺志瑛,夏芝安,归文强,张智群.发动机橡胶悬置有限元模型的建立及实验验证[J].西华大学学报(自然科学版),2015(03):10-12.

[2]陈剑,史韦意,蒋丰鑫,曾维俊,沈忠亮,汪一峰.考虑车内振动的动力总成悬置系统多目标优化[J].中国机械工程,2020(08):2-5.

[3] 尹安东,宣亮.基于非线性二次规划算法的电动汽车 传动系参数设计与优化[J].汽车工程学报.2019(06):41-42.

[4]童炜,陈剑斌,宋晓琳.基于ADAMS的发动机悬置系统多目标优化[J].汽车工程,2011(11):17-25.