火电厂锅炉汽轮机节能环保对策研究

辛意刚 吴 琼 北方联合电力有限责任公司包头第二热电厂 内蒙古 包头 014000

摘 要:火电厂锅炉汽轮机节能环保对策研究聚焦于提升能源利用效率、减少环境污染。通过实施智能化管理与控制,实现锅炉汽轮机的实时监控、精确控制和优化调度。同时,加强能源回收与利用,有效回收余热、废渣等能源资源,减少能源浪费,优化燃烧过程与燃料管理,提升锅炉与汽轮机效率,进一步降低能源消耗。这些对策旨在推动火电厂向更加绿色、高效的方向发展,实现可持续发展。

关键词:火电厂;锅炉汽轮机;节能环保;对策

引言:随着全球能源储备日趋紧张,环境问题日益 凸显,火电厂作为电力供应的重要支柱,其节能环保责 任愈发重大。锅炉汽轮机作为火电厂的核心设备,其运 行效率直接关系到能源利用效率和环境污染排放。基于 此,开展火电厂锅炉汽轮机节能环保对策研究,有助于 提升火电厂的经济效益,还能有效促进环境保护和资源 节约。本文旨在探讨火电厂锅炉汽轮机节能环保的有效 策略,为火电厂的可持续发展提供有力支持。

1 火电厂锅炉汽轮机节能环保的重要性

火电厂锅炉汽轮机的节能环保至关重要,其关乎能 源的高效利用, 更是实现环境可持续发展的关键一环, 对于经济的稳定增长也起着举足轻重的支撑作用。火电 厂锅炉汽轮机系统作为能源转换的核心设备, 其节能优 化对于提高能源利用效率具有关键作用。通过优化锅炉 燃烧方式、改善汽轮机的工作参数和运行方式等节能措 施,可以显著减少能源的浪费,提高能源的利用效率。 这不仅有助于降低火电厂的能源消耗和生产成本,还能 有效缓解能源紧张的局面, 为经济的可持续发展提供有 力保障。另外,火电厂在运行过程中会产生大量的二氧 化硫等有害气体,对环境造成严重的污染。锅炉汽轮机 系统的节能环保改造可以有效降低这些污染物的排放 量。例如,通过采用先进的脱硫、脱硝技术,可以显著 降低二氧化硫和氮氧化物的排放浓度,减轻对大气环境 的污染。此外, 优化锅炉燃烧方式还可以减少烟尘的排 放量,进一步改善环境质量[1]。锅炉汽轮机系统的节能 环保改造不仅可以提高能源利用效率,还可以增强设备 的稳定性和可靠性。通过优化设备的运行参数和监控手 段,可以及时发现并处理设备故障,避免因设备故障导 致的停电事故,确保电力系统的稳定运行。通过采用先 进的节能技术和环保措施,可以降低火电厂的能源消耗 和污染物排放量,推动能源结构的优化和升级。同时,

这也有助于提高火电厂的经济效益和社会效益,为经济的可持续发展提供有力支持。

2 火电厂锅炉汽轮机节能现状

2.1 燃料管理不善与燃烧效率低下

火电厂锅炉汽轮机节能现状中,燃料管理不善与燃 烧效率低下是两大突出问题,这些问题不仅直接影响了 火电厂的经济效益,也对环境造成了不必要的负担。 在火电厂的日常运营中,燃料管理是一个至关重要的环 节。然而, 当前许多火电厂在燃料管理方面存在明显的 不足。首先,燃料采购环节缺乏科学有效的规划,往往 导致采购的燃料质量参差不齐, 甚至可能采购到劣质燃 料,这直接影响了锅炉的燃烧效率和汽轮机的运行稳定 性。在燃料储存方面,部分火电厂缺乏科学的储存设施 和管理制度,导致燃料在储存过程中发生自燃、氧化等 损失,降低了燃料的利用率。此外,燃料的配比和供应 也存在问题,往往不能根据锅炉的实际运行情况进行及 时调整,造成了燃料的浪费。燃烧效率是火电厂锅炉运 行的重要指标之一,但当前许多火电厂的燃烧效率普遍 偏低[2]。部分火电厂的锅炉设备使用时间较长,设备老化 严重,导致燃烧不充分,热效率降低。一些火电厂在燃 烧技术上缺乏创新和投入,仍然采用传统的燃烧方式, 无法充分利用燃料的能量。锅炉的燃烧控制是一个复杂 的系统工程,需要精确控制燃料的供应量、空气流量等 参数。然而, 部分火电厂在燃烧控制上缺乏精准性, 导 致燃烧不稳定,燃烧效率低下。在燃烧过程中,会产生 大量的废气、废渣等污染物。部分火电厂在排放控制上 不够严格,导致大量污染物直接排放到环境中,不仅污 染了环境,也浪费了能源。

2.2 锅炉与汽轮机设备效率不高

火电厂锅炉汽轮机节能现状中,锅炉与汽轮机设备 效率不高是一个显著的问题。这两个设备在火电厂的能 源转换过程中扮演着核心角色, 但受限于技术、设计、 维护等多方面的因素,它们的效率往往难以达到理想状 态。从锅炉的角度来看,其效率不高主要表现在热效率 较低和燃烧不充分两个方面。锅炉的热效率是指燃料在 锅炉中燃烧所产生的热量与燃料低位发热量之比,但由 于燃料品质的不稳定、燃烧方式的不合理以及锅炉结构 设计的限制,使得热效率难以达到最佳状态。此外,燃 烧不充分也是导致锅炉效率不高的重要原因,这不仅会 造成能源的浪费,还会增加污染物的排放。与锅炉紧密 相连的汽轮机,其效率问题同样不容忽视。汽轮机的效 率主要体现在热能转换为机械能的效率上, 但受到蒸汽 参数、叶片设计、密封性能等多种因素的影响,其效率 往往难以达到设计值[3]。蒸汽参数的不稳定会直接影响汽 轮机的运行效率,而叶片设计和密封性能的好坏则直接 决定了汽轮机内部能量转换的效率。锅炉与汽轮机设备 效率不高的现状,不仅会影响火电厂的经济效益,还会 对环境造成负面影响。低效率的能源转换意味着更多的 能源消耗和更高的污染物排放,这不仅增加了火电厂的 运营成本,也对环境造成了更大的压力。

2.3 能源浪费与回收不足

锅炉汽轮机系统作为火电厂的核心设备, 其能源利 用效率的高低直接决定了整个电厂的能源消耗水平。然 而,由于技术限制、操作不当以及设备老化等原因, 锅炉汽轮机系统在运行过程中往往会产生大量的能源浪 费。一方面,锅炉在燃烧过程中由于燃烧不充分、排烟 温度高等问题,会导致大量的热能被白白浪费掉。这些 热能没有被有效地转化为电能,而是被直接排放到大气 中,造成了能源的巨大损失。另一方面,汽轮机在运行 过程中也存在着能源浪费的问题。由于蒸汽参数的波 动、叶片磨损以及密封性能下降等原因, 汽轮机的效率 往往难以达到设计值,从而导致部分机械能被浪费掉。 此外, 汽轮机的冷却水系统也可能存在能源浪费现象, 如冷却水温度过高、流量过大等,都会增加电厂的能 耗。除了能源浪费外,火电厂在能源回收方面也存在着 不足。能源回收是指将火电厂在发电过程中产生的余 热、余压等低品位能源进行回收利用,以提高能源利用 效率。然而,在实际操作中,许多火电厂对于能源回收 的重视程度不够,缺乏有效的回收技术和设备,导致大 量低品位能源被白白浪费掉。

3 火电厂锅炉汽轮机节能环保对策

3.1 优化燃烧过程与燃料管理

在火电厂锅炉汽轮机节能环保的对策中,优化燃烧 过程与燃料管理是一项至关重要的实质性措施。引入先 进的燃烧技术和设备成为关键。例如,采用高效燃烧 器、优化燃烧室设计和采用智能控制系统等手段,可以 提高燃烧过程的稳定性、效率和清洁度。通过实时监测 燃烧过程中的各项参数,如温度、压力、氧气含量等, 并对其进行精准控制,可以确保燃料充分燃烧,减少未 燃尽物质和污染物的排放。再者, 应建立完善的燃料管 理制度,从采购、储存到使用,都要有严格的标准和程 序。在采购环节,要选择质量好、热值高的燃料,并与供 应商建立长期稳定的合作关系,确保燃料供应的稳定性和 质量。在储存环节,要采取科学的储存方式,避免燃料在 储存过程中的损失和浪费。在使用环节,要根据锅炉的实 际情况和燃料特性,制定合理的燃烧计划和配比方案,确 保燃料的高效利用。除此之外,还可以采用一些先进的技 术手段来辅助燃烧过程的优化和燃料管理。例如,利用大 数据分析技术, 对燃烧过程中的各项数据进行深入挖掘和 分析,找出影响燃烧效率和污染物排放的关键因素,并制 定相应的优化措施。同时,还可以利用物联网技术,对燃 烧设备和燃料管理系统进行远程监控和智能控制,实现燃 烧过程的自动化和智能化管理。

3.2 提升锅炉与汽轮机效率

针对锅炉,需要关注其燃烧系统和热交换系统的优 化。燃烧系统的优化包括改进燃烧器设计,确保燃料能 够充分燃烧,减少未燃尽损失。同时,调整燃烧参数, 如燃烧温度、氧气含量等,以优化燃烧过程,降低污染 物排放。热交换系统的优化则涉及提高锅炉受热面的传 热效率,通过改善受热面材质、优化受热面布置等方 式,减少热损失,提高锅炉整体效率。另外,汽轮机作 为火电厂中的关键设备,其效率的提升同样不容忽视。 需要关注汽轮机的通流部分和排汽部分。通流部分的优 化主要包括改进叶片设计,减少流动损失,提高蒸汽的 做功能力。同时,对汽轮机内部的密封结构进行改进, 减少漏汽损失, 也是提高汽轮机效率的有效途径。排汽 部分的优化则涉及降低排汽压力,减少排汽损失,从而 提高汽轮机的热效率。为了进一步提升锅炉与汽轮机的 效率,还可以引入先进的节能技术和设备[4]。例如,采用 高效除尘器、脱硫脱硝装置等环保设备,减少污染物排 放,同时提高锅炉的清洁度,减少热损失。在汽轮机方 面,可以引入先进的控制系统和故障诊断系统,实现汽 轮机的智能控制和故障预警,确保设备在安全、高效的 状态下运行。在实施这些措施时,需要注意以下几点, 确保设备的稳定运行,避免频繁启停对设备造成损害, 加强设备的维护和保养工作,确保设备处于良好的工作 状态。最后,要关注新技术和新设备的发展动态,及时

引进和应用先进的节能技术和设备,以不断提高锅炉与 汽轮机的效率。

3.3 加强能源回收与利用

为了有效地提高能源利用效率并减少环境污染,需 要针对火电厂的余热资源进行高效回收。锅炉在运行过 程中会产生大量的高温烟气和水蒸气,这些烟气和水 蒸气中含有大量的热能。为了充分利用这些热能,我们 可以采用余热回收技术,如安装热交换器、余热锅炉等 设备,将烟气和水蒸气中的热能转化为可再利用的热能 或电能。这样不仅可以降低能源消耗,还能减少废热排 放,对环境保护具有积极意义。接着,关注冷却水的回 收与利用。火电厂的汽轮机在运行过程中需要大量的冷 却水进行冷却, 而冷却水在冷却过程中会带走大量的热 能。如果我们能够将这些冷却水进行回收并再次利用, 不仅可以减少新鲜水的消耗,还能降低废水的排放。为 此,我们可以采用闭式循环冷却系统,将冷却水在系统 中循环使用,同时采用高效的冷却设备和技术,提高冷 却效果,减少热能损失。当然,火电厂在发电过程中还 会产生一些废渣和废气,这些废渣和废气中也含有一定 的能源价值。为了充分利用这些能源,我们可以采用废 渣综合利用技术和废气回收技术[5]。废渣可以经过处理 后用于生产建筑材料、肥料等,实现资源的再利用;废 气则可以通过净化处理后再次利用,如用于发电、供暖 等。在实施能源回收与利用的过程中要注意确保回收与 利用技术的可行性和经济性,避免盲目投资造成资源浪 费,加强设备的维护和保养工作,确保回收与利用设备 能够长期稳定运行。

3.4 实施智能化管理与控制

智能化管理与控制通过集成先进的自动化、信息化和人工智能技术,实现对火电厂锅炉汽轮机运行过程的实时监控、精确控制和优化调度,从而显著提高能源利用效率,降低环境污染。(1)智能化管理系统能够实时监控锅炉汽轮机的运行状态和关键参数。通过安装传感器和监测设备,系统能够实时采集温度、压力、流量、

振动等关键数据,并对其进行处理和分析。这样,管 理人员可以实时了解设备的运行状况,及时发现潜在问 题,避免故障的发生。(2)智能化控制系统能够实现对 锅炉汽轮机的精确控制。基于实时采集的数据,系统可 以自动调整燃烧参数、蒸汽参数等,确保设备在最佳状 态下运行。通过精确控制,可以减少能源的浪费,提高 能源利用效率。同时,系统还可以根据负荷变化自动调 整设备运行状态,实现负荷的平稳过渡,减少设备的启 停次数,延长设备的使用寿命。(3)智能化管理系统 还可以实现对火电厂运行过程的优化调度。系统可以根 据历史数据和实时数据, 预测未来的负荷变化和能源需 求,从而提前制定运行计划。通过优化调度,可以合理 安排设备的运行时间和运行方式,避免能源的浪费和环 境污染。通过实时监控、精确控制和优化调度等手段, 可以显著提高能源利用效率,降低环境污染,实现火电 厂的可持续发展。

结束语

未来,在火电厂锅炉汽轮机领域,我们有望探索出 更多高效、环保的新技术和解决方案,以推动火电厂向 更加绿色、低碳、高效的方向发展。这不仅将大幅提升 能源利用效率,减少环境污染,还将为火电厂的可持续 发展注入源源不断的动力,共同构建一个更加可持续、 健康的能源未来。

参考文献

- [1]姜瀚博.关于火电厂锅炉汽轮机节能环保措施的探讨[J].电气时代,2021(02):20-21.
- [2]杨凯.火电厂锅炉汽轮机系统节能环保的问题及措施[J].资源节约与环保,2019(08):45-46
- [3]史慧平.火电厂机组节能环保技术改造的策略研究 [J].化工管理,2019(17):61-62.
- [4]刘楠,邢海鹏.火电厂锅炉汽轮机系统的节能环保问题及措施[J].海峡科技与产业,2022,35(01):69-71.
- [5]梁晓剑.关于火电厂锅炉汽轮机节能环保措施的探讨[J].中国设备工程,2021(20):240-242.