地铁刚性接触网供电系统弓网状态在线检测装置

黄焕烨

深圳地铁运营集团有限公司 广东 深圳 518000

摘要:地铁刚性接触网供电系统中,弓网状态在线检测装置成为保障运营安全与效率的关键。该装置集成高精度传感器与智能分析技术,实时监测弓网接触压力、磨损及燃弧等关键参数,通过即时预警与数据分析,有效预防故障发生,提升供电系统稳定性。其应用显著降低故障率,优化运维流程,为地铁安全高效运行提供坚实支撑。

关键词: 地铁供电系统; 刚性接触网; 故障; 措施

1 地铁刚性接触网供电系统概述

地铁刚性接触网供电系统是城市轨道交通中至关重 要的电力传输系统。该系统主要由接触线、支柱、导线 及保护线等核心部件组成,它们共同协作,为地铁列车 提供稳定可靠的高压直流电能。接触线作为刚性接触网 的核心,直接位于轨道上方,通过滑动接触与列车顶部 的受电弓相连,确保列车在行驶过程中能够持续获得动 力。其形状多样,如圆弧形、V形或三角形,以适应不 同的运行需求。支柱则负责支撑和固定接触线,确保其 在整个线路上的稳定布局。这些支柱通常由钢筋混凝土 或钢制材料制成,具有高强度和稳定性,能够抵抗各种 环境因素的影响。导线则负责将接触线传输的电能输送 到指定的终端处,通常采用细铜线制成,具有良好的导 电性和耐腐蚀性,保护线位于接触线下方,起到电气隔 离和保护人员及设备的作用,防止意外事故的发生[1]。地 铁刚性接触网供电系统以其结构简单、安全可靠、供电 间距长等优点,在城市轨道交通中得到了广泛应用。它 不仅能够为列车提供充足的电力供应,还能够确保列车 在高速行驶过程中保持稳定的牵引力, 从而保障乘客的 出行安全和舒适。随着技术的不断进步和应用的不断拓 展,地铁刚性接触网供电系统将在未来城市轨道交通中 发挥更加重要的作用。

2 地铁供电系统中弓网的作用和重要性

地铁供电系统中,弓网系统作为连接接触网与地铁列车受电弓的关键部分,扮演着不可或缺的角色,其重要性和作用不容忽视。弓网系统主要由接触网和受电弓组成,它们通过动态接触,将接触网上的高压电能传输至地铁列车,为列车提供持续的牵引力和动力支持。在列车高速行驶的过程中,受电弓与接触网之间需要保持紧密的接触,以确保电能的稳定传输。这种接触不仅要求平稳,还需要具备足够的耐磨性和抗腐蚀性,以应对复杂多变的环境条件。弓网系统的重要性在于,它直接

决定了地铁列车的运行效率和安全性,一旦弓网系统出现故障,如接触不良、离线或磨损严重等,将会导致列车牵引力下降、供电中断等严重后果,直接影响列车的正常运行和乘客的出行安全,地铁供电系统对弓网系统的维护和保养工作非常重视,通过定期检查、清洁和更换磨损部件等措施,确保弓网系统的良好运行状态。

3 弓网状态在线检测装置设计原理

3.1 传感器选择和布置方法

弓网状态在线检测装置的设计首先依赖于精确而合 理的传感器选择与布置方法。这一环节是确保检测数据 准确性和可靠性的基础。(1)传感器选择:采用高分辨 率、高灵敏度的摄像机,如300万像素的高清彩色摄像 机,并配备电动变焦镜头,以实现对弓网运行状态的详 细成像。这类传感器能够捕捉弓网接触过程中的微小变 化,如碳滑板磨损、接触网几何形变等。布置在受电弓 与接触网之间,用于采集弓网动态接触压力数据。这些 传感器能够实时测量并记录接触压力的变化, 为评估弓 网受流质量提供关键数据。安装于受电弓的前滑板和后 滑板上,用于测量滑板的纵向、垂向和横向加速度。这 些数据对于分析受电弓振动特性、预测滑板磨损具有重 要意义。利用其高灵敏度和抗干扰能力,采集弓网离线 火花的燃弧数据。这类传感器能够在复杂电磁环境中准 确捕捉燃弧信号,为评估弓网状态提供重要依据。用于 检测弓网接触点的温度变化。接触点温度过高可能是磨 损加剧或电气隔离不良的信号, 红外热成像传感器能够 及时发现这些异常情况[2]。(2)布置方法:传感器的布 置需综合考虑弓网结构特点、运行工况及检测需求。一 般来说, 高清摄像传感器应安装在能够清晰拍摄弓网接 触区域的位置,如受电弓上方或侧面。力学传感器和加 速度传感器则需紧贴受电弓滑板安装, 以确保数据的准 确性。光纤光栅传感器和红外热成像传感器则需根据具 体检测需求灵活布置,以覆盖弓网运行的关键区域。

3.2 检测装置数据采集与处理技术

数据采集与处理技术是实现弓网状态在线检测的核 心环节。这一过程涉及数据采集、传输、存储及预处理 等多个步骤。第一、数据采集:利用上述各类传感器, 实时采集弓网运行过程中的各项数据。数据采集系统需 具备高速、稳定、抗干扰的能力, 以确保数据的完整性 和准确性,数据采集系统还需具备同步触发功能,确保 各类传感器采集的数据在时间上保持一致。第二、数据 传输:采集到的数据需及时传输至数据处理中心。在地 铁列车上,通常采用无线传输方式,如Wi-Fi、Zigbee 等,以实现数据的实时传输。数据传输过程中需采取加 密措施,确保数据安全。第三、数据存储:将传输至数 据处理中心的数据进行存储。数据存储系统需具备大容 量、高可靠性及易扩展性等特点,以应对海量数据的存 储需求。还需建立数据备份机制,确保数据安全可靠。 第四、数据处理:对采集到的数据进行预处理,包括数 据清洗、去噪、滤波等步骤,以提高数据质量,利用图 像识别、信号处理等技术提取有用信息,如弓网接触压 力分布、滑板磨损情况、燃弧频率及位置等。这些数据 将为后续的状态分析与诊断提供基础[3]。

3.3 基于智能算法的状态分析与诊断

基于智能算法的状态分析与诊断是弓网状态在线检 测装置的核心功能之一。这一过程涉及数据挖掘、模式 识别、故障预测等多个方面。(1)数据挖掘:利用数 据挖掘技术,对预处理后的数据进行深入分析。通过关 联分析、聚类分析等方法, 发现数据中的潜在规律和 模式。这些规律和模式将有助于揭示弓网状态的内在机 制,为状态评估提供有力支持。(2)模式识别:基于机 器学习算法,建立弓网状态识别模型。该模型能够自动 识别弓网运行过程中的各种状态模式,如正常状态、磨 损状态、燃弧状态等。通过不断学习和优化,模型将具 备更高的识别精度和泛化能力。(3)故障预测:结合历 史数据和实时数据,利用预测算法对弓网未来的状态进 行预测。通过分析弓网状态的变化趋势和影响因素,预 测可能出现的故障类型和发生时间。这将为地铁运营部 门提供宝贵的预警信息,有助于提前采取措施避免故障 发生。(4)诊断报告生成:根据状态分析与诊断结果, 生成详细的诊断报告。报告应包括弓网状态评估结果、 故障预测信息、维护建议等内容。这些信息将为地铁运 营部门提供科学的决策依据, 指导他们制定合理的维护 计划和检修策略。

4 弓网状态在线检测装置在地铁供电系统中的应用

4.1 在线监测系统硬件部署与软件开发

弓网状态在线检测装置在地铁供电系统中的应用, 极大地提升了供电系统的安全性与可靠性,实现了对弓 网接触状态的实时监测与评估。在线监测系统的硬件 部署是确保检测功能实现的基础。首先, 在受电弓及接 触网的关键位置安装多种类型的传感器, 如高清摄像传 感器、力学传感器、加速度传感器、光纤光栅传感器以 及红外热成像传感器等。这些传感器通过有线或无线方 式连接,形成一个覆盖弓网接触区域的传感器网络。在 每个检测点设置数据采集单元(Data Acquisition Unit, DAU),负责接收来自传感器的原始数据,并进行初步 的处理和压缩。DAU通常具备高速数据传输接口,能 够实时将处理后的数据上传至数据处理中心。构建稳定 可靠的数据传输网络,确保采集到的数据能够实时、准 确地传输至中央监控室。这通常包括车地无线通信系统 (如LTE-R、Wi-Fi等)和地面有线传输网络。在中央监 控室设置服务器群和存储设备,用于接收、存储和处理来 自各个检测点的数据,配置大屏幕显示器和监控软件, 以便运维人员能够直观地查看弓网状态监测结果[4]。软 件开发;与硬件部署相配套,软件开发也是在线监测系 统不可或缺的一部分。开发数据采集软件,用于配置传 感器参数、接收传感器数据、进行初步的数据处理(如 滤波、去噪等)和压缩,并将处理后的数据打包上传至 数据处理中心。开发数据处理与分析软件,用于接收来 自各个检测点的数据,进行更高级的数据处理(如图像 识别、信号分析等),并提取有用信息(如弓网接触压 力、滑板磨损情况、燃弧频率等)。利用智能算法对弓 网状态进行实时分析和诊断, 预测潜在故障。开发用户 友好的监控界面, 使运维人员能够直观地查看弓网状态 监测结果、历史数据曲线图、故障报警信息等,设置报 警阈值和报警逻辑, 当检测到异常或故障时, 自动触发 报警机制, 提醒运维人员及时采取措施。开发数据管理 与报告生成软件,用于对海量数据进行有效管理(如分类 存储、索引查询等),并生成详细的诊断报告和统计报 表。这些报告和报表将为地铁运营部门提供科学的决策 依据, 指导他们制定合理的维护计划和检修策略。

4.2 弓网状态实时监测与报警机制

弓网状态实时监测与报警机制是地铁供电系统中至 关重要的一环,它确保了弓网接触状态的持续监控和及 时响应。该机制通过集成高精度传感器、实时数据处理 技术及智能报警系统,实现了对弓网接触压力、磨损情 况、燃弧现象等关键参数的实时监测。在实时监测过程 中,传感器网络不间断地采集弓网运行数据,并将这些 数据通过高速数据传输通道发送至中央监控中心。监控 中心内的数据处理系统迅速对这些数据进行解析、分析和处理,提取出反映弓网状态的关键信息。系统利用智能算法对弓网状态进行实时评估,判断其是否处于正常或异常状态。一旦监测到弓网状态出现异常,如接触压力异常波动、滑板磨损过快、频繁出现燃弧现象等,系统将立即触发报警机制。报警机制通过声光报警、短信通知、邮件提醒等多种方式,迅速将异常信息传达给运维人员,系统还会自动生成详细的报警记录,包括异常发生的时间、地点、类型及严重程度等信息,为运维人员提供准确的故障定位依据。运维人员接收到报警信息后,可立即通过监控界面查看弓网实时状态,并根据报警记录迅速定位故障点。随后,他们可以根据故障类型和严重程度,采取相应的应急措施,如调整列车运行速度、切换备用供电线路或组织抢修队伍等,以尽快恢复弓网正常状态,确保地铁列车的安全稳定运行。

4.3 检测装置在地铁供电系统运行中的效果评估

弓网状态在线检测装置在地铁供电系统中的应用, 极大地提升了系统运行的可靠性和安全性, 为地铁列车 的持续稳定运行提供了坚实保障。这套装置通过实时监 测弓网接触状态,及时捕捉并预警潜在问题,有效避免 了因弓网故障导致的列车停运和安全事故。在应用过程 中,检测装置展现出了显著的效果[5]。首先,它能够实现 对弓网接触压力、磨损情况、燃弧现象等关键参数的精 确测量和连续监测,为运维人员提供丰富的数据支持。 这些数据不仅帮助运维人员准确了解弓网的实时状态, 还为他们分析故障原因、制定维修计划提供科学依据。 其次,检测装置的智能报警功能在地铁供电系统运行中 发挥了重要作用。一旦检测到弓网状态异常,装置会立 即触发报警机制,通过多种渠道将报警信息传达给运维 人员。这种及时的报警机制使得运维人员能够迅速响 应,采取有效措施防止故障扩大,从而减少了停运时间 和维修成本。检测装置还具备强大的数据分析和处理能 力,它能够对采集到的数据进行深度挖掘和智能分析,揭示弓网状态的内在规律和变化趋势。通过对比分析历史数据和实时数据,运维人员可以更加准确地预测弓网的未来状态,提前制定预防性维护计划,避免故障发生。在效果评估方面,可以从多个维度进行考量,一是从故障率下降的角度评估,通过对比应用检测装置前后的弓网故障率,可以直观地看到装置在减少故障方面的成效。二是从运营效率提升的角度评估,检测装置的应用使得运维人员能够更快速地定位和修复故障,从而减少停运时间,提高了地铁列车的运营效率。三是从成本节约的角度评估,通过减少故障发生和缩短维修时间,检测装置的应用为地铁运营部门节约了大量的维修成本和人力资源。

结束语

地铁刚性接触网供电系统中, 弓网状态在线检测装置以其精准监测与智能预警能力, 展现在提升系统可靠性、降低运维成本方面的巨大潜力。随着技术的不断进步,该装置将持续优化, 为地铁供电系统的智能化、自动化发展贡献力量, 推动城市轨道交通迈向更加安全、高效的新时代。

参考文献

- [1]于金鑫,于龙,冯超.基于仿真方法研究中间接头对弓网接触压力的影响[J].电工技术,2018(16):150-153+156.
- [2]钟人正.地铁供电系统中刚性接触网常见故障和防范措施解析[J].工程建设与设计,2018(14):72-73.
- [3]张璐.广州地铁二号线刚性接触线磨耗分析研究报告与应对措施[J].中国新技术新产品,2018(10):96-98.
- [4]盛良,赵立峰,张文轩,等.地铁架空刚性接触网弓网系统运行特征分析[J].现代城市轨道交通,2019,(8):63-69.
- [5]王博博.地铁架空柔性接触网弓网磨耗异常的分析与解决方法[J].建筑工程技术与设计,2019,(12):517.