铝合金激光焊接技术应用现状与发展趋势

全启明 施晓松 毛圣杰 西安德仕汽车零部件有限责任公司 陕西 西安 710000

摘 要:铝合金激光焊接技术作为现代制造业的重要支撑,以其高效、精密、环保的特点,在航空航天、汽车制造、电子电器等多个领域展现出广泛应用前景。本文综述了铝合金激光焊接技术的当前应用现状,包括其在各行业中的实际应用案例、技术特点及优势。同时,深入探讨了该技术的发展趋势,指出技术创新、应用领域拓展、环保节能、自动化智能化水平提升以及多学科交叉融合等关键方向。

关键词:铝合金;激光焊接技术;应用现状;发展趋势

引言

随着制造业的快速发展和科技进步,铝合金作为一种轻质高强度的金属材料,在航空航天、汽车、建筑等领域的应用日益广泛。而激光焊接技术作为先进制造技术的代表,以其独特的优势在铝合金焊接中展现出巨大潜力。铝合金激光焊接技术不仅能够实现高质量的焊接效果,还具有焊接速度快、热影响区小、焊缝美观等优点。因此,深入了解铝合金激光焊接技术的应用现状与发展趋势,对于推动制造业的高质量发展具有重要意义。

1 铝合金激光焊特点

铝合金激光焊接技术,作为现代工业制造领域的一 项革新性成果,正随着大功率、高性能激光焊接设备的 不断涌现而迅猛发展, 其独特的优势使得它成为铝合金 材料连接技术中最具潜力和前景的方法之一。这项技术 不仅在焊接热循环控制、化学冶金过程、生产效率提升 以及焊缝成型质量等方面展现出显著特征, 更在多个维 度上深刻影响着铝合金加工行业的未来发展方向。(1) 焊接比能,即焊合单位表面积所需消耗的能量,是衡量 焊接效率与热影响程度的重要指标。相较于传统的氩弧 焊等焊接方法, 铝合金激光焊接技术凭借其高度集中的 能量束,实现了焊接比能的显著降低[1]。这意味着在达到 相同焊接效果的前提下,激光焊接所需的总能量更少, 从而有效减少了焊接过程中的热输入, 使得热影响区范 围大幅缩小。这一特性对于热敏感性强、易产生焊接变 形的铝合金材料而言尤为重要,它有助于保持材料原有 的机械性能和微观结构,减少焊接后处理的工作量。 (2)铝合金激光焊接技术还以其极小的焊接变形而广 受赞誉,这得益于激光束经过聚焦后形成的微小光斑直 径,该光斑在材料表面上的作用面积极为有限,从而实 现了高度局部化的能量输入。这种局部化的加热方式不 仅减少了热影响区的范围,还显著降低了焊接过程中产 生的热应力,进而有效控制了焊接变形。对于追求高精度、低变形的铝合金结构件而言,铝合金激光焊接技术无疑是理想的选择。(3)生产效率的显著提升也是铝合金激光焊接技术的一大亮点,由于激光束的光斑直径小且功率密度极高,使得焊接过程中能够维持较快的焊接速度而不影响焊缝质量。这种高速焊接能力不仅缩短了生产周期,提高了生产效率,还降低了生产成本,增强了产品的市场竞争力。同时,激光焊接的焊缝质量优异,外观美观,无需或仅需少量后续打磨处理,进一步提升了整体生产流程的效率和自动化水平。

2 铝合金激光焊接技术发展现状

2.1 铝合金激光自熔焊

铝合金激光焊接技术作为现代制造业的关键技术之 一, 其发展历程中, 铝合金激光自熔焊作为核心分支, 始终面临着诸多挑战与机遇并存的局面。铝合金材料因 其优异的物理和化学性能, 在航空航天、汽车制造、电 子设备等多个领域得到广泛应用,然而,其高反射率、 高热导率以及焊接过程中特有的小孔效应等特性, 使得 铝合金激光自熔焊技术在实际操作中显得尤为复杂且精 细[2]。铝合金激光自熔焊的核心难题之一在干铝合金表 面对激光的初始高反射率,这一特性要求激光焊接设备 必须具备极高的功率密度, 以穿透材料表面, 实现有效 焊接。同时,激光光斑直径的微小化虽然提高了能量集 中度,但也使得工件对焊接中心位置和装配间隙的适应 性变得极为敏感。因此,在进行铝合金激光自熔焊时, 必须采用高精度的焊接夹具和光束调整系统,确保焊接 路径的准确无误,以及光束与工件之间的精确对位。另 外,加热和冷却速度极快是铝合金激光自熔焊的另一显 著特点,这一过程中,材料经历了从固态到液态再到固 态的快速转变,伴随着剧烈的相变和温度变化。这种快 速的热循环不仅影响焊缝的微观组织结构, 还可能导致 焊接缺陷的产生,如合金元素的蒸发、焊接气孔以及焊缝凹陷和咬边等。尤其是小孔效应的存在,进一步加剧了合金元素的挥发和燃烧风险,对焊接质量构成了严重威胁。

2.2 铝合金激光填丝焊接

与激光自熔焊相比,激光填丝焊可以放宽对焊接工 艺的要求。第一,激光填丝焊接技术通过填充不同成分 的焊丝,实现了对焊缝组织和力学性能的精准调控。 焊丝中的合金元素可以与基材发生相互作用,形成更加 均匀、致密的焊缝组织,从而提高焊缝的强度和韧性。 同时,焊丝的选择还可以根据具体的应用需求进行定 制,以满足不同的力学性能要求,如抗腐蚀性、抗疲劳 性等。这种灵活性和可控性使得激光填丝焊接技术在复 杂结构和高性能要求的铝合金构件制造中展现出巨大潜 力。第二,激光填丝焊接技术改善了焊缝金属的流动特 性,进一步优化了焊缝成形质量。在激光自熔焊中,由 于铝合金的高热导率和低熔点特性, 焊缝金属的流动性 往往难以控制,容易导致焊缝形状不规则、表面粗糙等 问题。而激光填丝焊接通过焊丝的添加,增加了焊缝金 属的体积, 使得焊缝金属在熔池中能够更好地铺展和流 动,从而形成更加平滑、均匀的焊缝表面。此外,焊丝 的加入还有助于减少焊接过程中的飞溅和气泡等缺陷, 提高焊缝的致密性和可靠性。第三,在厚板多层焊接方 面,激光填丝焊接技术同样表现出色。由于激光束的能 量密度高且易于控制,通过采用低功率激光进行窄焊道 的焊接,可以实现对厚板材料的逐层累积焊接。这种焊 接方式不仅减少了焊接热输入和变形风险,还提高了焊 接效率和生产灵活性。同时,激光填丝焊接技术还允许 在焊接过程中实时调整焊丝的成分和送丝速度等参数, 以适应不同厚度和材质的焊接需求,确保焊接质量的稳 定性和一致性。

2.3 搅拌摩擦焊

自1991年发现搅拌摩擦焊以来,搅拌摩擦焊在轻合金焊接领域具有许多优于传统熔焊方法的优点。搅拌摩擦焊的基本原理是通过一个旋转的搅拌头(也称为搅拌针)插入待焊工件之间,并沿着焊缝方向移动。搅拌头的轴肩和搅拌针与工件表面及内部材料发生摩擦生热,使材料达到热塑性状态而不熔化。这种非熔化的焊接方式避免了因材料熔化而产生的气孔、裂纹等缺陷,同时也消除了焊接过程中可能产生的烟雾、飞溅和有害辐射,极大地改善了焊接作业环境,保障了焊工的健康安全。在铝合金等轻合金的焊接中,搅拌摩擦焊的优势尤为突出,铝合金具有较高的热导率和较低的熔点,传统

熔焊方法往往难以精确控制焊接热输入,容易导致焊缝 组织粗大、热影响区宽、变形大等问题[3]。而搅拌摩擦 焊通过搅拌头的机械搅拌和热输入的共同作用,实现了 对焊接热循环的精确控制, 使得焊缝组织更加细密、均 匀,热影响区显著减小,变形也得到了有效控制。此 外,搅拌摩擦焊还能够实现全位置焊接,对工件的形状 和尺寸适应性强,进一步拓宽了其应用范围。然而,搅 拌摩擦焊在铝合金焊接中也并非毫无缺陷。首先,焊接 接头处可能存在坡口不平整、飞边残留等问题,这些都 需要在后续加工中进行处理。其次,虽然搅拌摩擦焊避 免了气孔和裂纹等传统熔焊缺陷, 但在某些特定条件下 仍有可能出现未焊透等缺陷,这要求焊工在操作过程中 必须严格控制焊接参数和工艺条件。此外, 搅拌摩擦焊 设备的制造成本和维护费用相对较高,对操作人员的技 能要求也较高,这在一定程度上限制了其在某些领域的 应用。

2.4 激光焊接

激光焊接技术,作为现代工业中一项高精尖的焊接 工艺, 凭借其独特的优势在众多材料连接领域展现出非 凡的应用潜力。其核心特点在于其高功率密度的光束能 量,这一特性使得激光焊接在加热材料时能够迅速达到 极高的温度,从而实现快速而精确的焊接过程。与传统 焊接方法相比,激光焊接的热输入量显著降低,这意味 着焊接过程中对材料的热影响区域被大幅缩小, 从而有 效减少了焊接变形和残余应力的产生。此外,激光焊接 的非接触式操作模式不仅避免了电极或焊丝与工件的直 接接触,减少了污染风险,还确保了焊接过程不受电磁 环境的干扰, 使得这一技术能够在各种复杂环境下稳定 作业,包括直接在大气中实施焊接,无需特殊的保护气 体环境。但是,铝合金因其高反射率特性,对激光能量 的吸收率相对较低,这要求激光焊接系统必须具备更高 的功率密度以克服反射问题。同时,铝合金优异的热导 率使得焊接过程中的热量迅速散失,进一步加大了焊接 难度。更为复杂的是,铝合金焊接时易产生等离子体, 这些等离子体如同一层屏障, 阻碍了激光能量的有效传 递,增加了焊接过程中的不确定性。因此,在铝合金激 光焊接过程中, 气孔和热裂纹等焊接缺陷成为难以避免 的问题,需通过优化焊接参数、选择合适的焊丝及保护 气体等措施来加以控制。

2.5 电子束焊接

由于电子束能量密度高、深宽比大,对于厚试样的 焊接可以一次形成电子束焊接,整个焊接过程都是在真 空条件下进行的,因此基本避免了铝合金外部产生的 氢孔缺陷,对于铝合金与铝合金板的焊接具有独特的优 势。但其在实际应用于铝合金焊接时,仍需面对一系列 由铝合金自身特性引发的挑战。铝合金的高热导率和易 氧化性, 使得焊接过程中往往伴随着飞溅现象, 这不仅 影响了接头的表面成形质量,还可能成为接头内部气孔 和裂纹的潜在诱因。此外, 电子束焊接过程中特有的钉 尖效应和冷绝缘缺陷也是不容忽视的问题,它们可能对 焊接接头的力学性能和耐久性产生不利影响。因此,如 何有效控制这些缺陷,提升电子束焊接铝合金的接头质 量,成为了业界关注的焦点。哈尔滨工业大学在此领域 进行了深入的研究,特别是针对25mm厚度的2A12铝合金 板材的焊接接头组织与性能进行了系统分析[4]。研究团队 通过创新的焊接策略,如采用高速焊接技术和增加扫描 路径优化,成功地在保证足够熔深的同时,显著提高了 焊接接头的整体质量。这一成果不仅体现了电子束焊接 技术在处理厚板铝合金材料时的强大能力, 也为解决铝 合金焊接中的飞溅、气孔和裂纹等问题提供了有效的解 决方案。

3 铝合金激光焊接技术的发展趋势

3.1 技术不断创新与优化

随着激光技术的不断进步,铝合金激光焊接技术也在不断创新与优化。这包括激光器性能的提升、焊接工艺参数的精细化调整以及焊接过程控制的智能化等。激光器的输出功率、光束质量和稳定性等方面的提升,使得铝合金激光焊接能够实现更高的焊接速度和更好的焊接质量。同时,通过对焊接工艺参数的精细化调整,可以针对不同种类的铝合金材料,实现最佳的焊接效果。此外,焊接过程控制的智能化也是未来的重要发展方向,通过引入先进的控制系统和传感器,实现焊接过程的实时监测和自动调节,进一步提高焊接的稳定性和可靠性。

3.2 应用领域持续拓展

铝合金激光焊接技术的应用领域正在持续拓展。随着航空航天、汽车制造、电子电器等行业的快速发展,对高质量、高效率的焊接技术需求不断增加。铝合金作为轻量化材料在这些领域的应用越来越广泛,而激光焊接技术以其独特的优势,如焊缝美观、强度高、热影响区小等,成为铝合金焊接的首选技术。未来,随着技术

的不断进步和应用需求的不断增加,铝合金激光焊接技术将在更多领域得到应用,如船舶制造、轨道交通、新 能源汽车等。

3.3 环保与节能成为重要考量

在当前全球倡导绿色发展和节能减排的背景下,铝合金激光焊接技术的环保与节能性能成为重要考量因素。相比传统焊接技术,激光焊接具有能耗低、污染小的特点。随着激光技术的不断进步和激光设备的不断优化,铝合金激光焊接的能耗将进一步降低,同时焊接过程中的烟尘、废气等污染物排放也将大幅减少。这不仅符合全球绿色发展的趋势,也有利于提升企业的社会责任感和竞争力。

3.4 自动化与智能化水平不断提升

随着制造业自动化和智能化水平的提升,铝合金激光焊接技术也将向更加自动化和智能化的方向发展。通过引入先进的自动化设备和机器人技术,可以实现焊接过程的自动化作业和无人化操作,提高生产效率和降低人力成本。同时,通过引入人工智能技术和大数据分析技术,可以对焊接过程进行智能监控和预测维护,提前发现和解决潜在问题,进一步提高焊接的稳定性和可靠性。

结语

综上所述,铝合金激光焊接技术以其独特的技术优势和广泛的应用前景,正成为现代制造业不可或缺的重要工具。当前,该技术在航空航天、汽车制造、电子电器等领域已取得显著应用成果,但仍需面对技术瓶颈和挑战。未来,随着技术创新的不断推进和跨学科融合的深入发展,铝合金激光焊接技术有望在更多领域实现突破和应用。

参考文献

- [1]戴景杰.铝合金激光焊接工艺特性研究[J].电焊机, 2019(3):20-23.
- [2]刘继常,李力钧.澈光复合焊接的探讨[J].焊接技术, 2020(4):6-8.
- [3]陈国庆,柳峻鹏,树西,等.铝合金焊接工艺的研究进展[J].焊接,2019(9):7-12.
- [4]邹吉鹏,李连胜,官建锋,等.铝合金厚板激光扫描填丝焊接气孔抑制[J].焊接学报,2019,4(10):43-47,66.