化工机械设备常见故障分析及维修技巧探讨

赵旭科

国家能源集团宁夏煤业煤制油化工安装检修分公司 宁夏 银川 750000

摘 要:化工机械设备故障多样,涉及泵类、压缩机、汽轮机等,常见有泄漏、振动及过热等。维修时,精准定位故障并制定维修方案是基础,同时,加强维修人员技能培训,提升安全意识尤为关键。维修结束后,严格的检测与验收流程必不可少,确保设备性能全面恢复。本文聚焦于往复式压缩机的填料、气阀、导向轴承、活塞、连杆、大小头瓦等关键部件,对这些部件的常见故障进行深入分析,并提出相应的维修技巧,以期为化工机械设备的安全稳定运行提供有力保障。

关键词: 化工机械设备; 常见故障; 维修技巧

引言: 化工机械设备作为化学工业生产流程中的心脏, 其持续且稳定的运行是确保高效生产和优质产出的基石。任何微小的故障都可能引发生产线的停滞, 不仅直接削弱生产效率, 还可能对最终产品的质量造成不可逆转的影响。鉴于此, 深入剖析化工机械设备的常见故障模式, 从根源上理解故障发生的原因, 并据此探索并实施高效的维修策略, 成为了提升设备耐用性、筑牢生产安全防线、有效控制维修费用的关键所在。这一过程不仅关乎技术层面的精进, 更是企业管理发展与责任的体现。

1 化工机械设备概述

化工机械设备是化学工业生产的核心,负责将原料转化为特定规格的成品。它们分为化工机器和化工设备两大类:化工设备如容器、塔器、反应器等,主要用于化学反应和物质分离;化工机器如各种机泵、汽轮机、压缩机等,通过运动部件实现物料输送、能量转化、连续化生产。这些设备结构多样,设计复杂,需承受高温、高压、腐蚀等恶劣工况[1]。化工机械设备涉及多种能量转换,处理工质性质多变,要求设备具备适应性、灵活性、耐腐蚀性、密封性和机械强度。其技术水平直接影响产品质量、产量和企业经济效益,因此,对化工机械设备的研究开发至关重要。

2 化工机械设备常见故障分析——以往复式压缩机 为例

2.1 填料常见故障分析及维修技巧

2.1.1 常见故障分析

填料常见故障主要包括泄漏和磨损。泄漏是填料故障中最为常见的问题。由于填料与活塞杆之间的密封面受到气体压力、温度变化和摩擦等因素的作用,容易出现密封不严的情况,导致气体从压缩机内部泄漏到外

部。这种泄漏不仅会降低压缩机的压缩效率,还可能对 周围环境造成污染。磨损是填料的另一种常见故障。在 压缩机运行过程中,填料与活塞杆之间会产生相对运 动,由于摩擦力的作用,填料表面会逐渐磨损。随着磨 损程度的加剧,填料与活塞杆之间的间隙会增大,从而 进一步加剧泄漏问题。此外,磨损还可能导致填料碎片 脱落,进入压缩机内部,对其它部件造成损伤。

2.1.2 维修技巧

首先,要定期检查填料的磨损情况。通过拆卸压缩 机或利用内窥镜等工具,观察填料表面的磨损程度,及 时发现并更换磨损严重的填料。在更换填料时,应选用 质量可靠、性能稳定的填料,并确保填料与活塞杆之间 的间隙符合设计要求。过紧的间隙可能导致填料与活塞 杆之间的摩擦力增大,加速磨损;而过松的间隙则可能 导致泄漏问题加剧。其次,对于泄漏问题,可以通过调 整填料的压紧力来解决。填料压紧力的大小直接影响其 密封效果。如果压紧力不足,填料与活塞杆之间的密封面 将无法紧密贴合,导致泄漏;如果压紧力过大,则可能 加速填料的磨损。因此,在调整填料压紧力时,应根据 压缩机的运行工况和填料的性能特点进行合理设置。此 外,还可以考虑采用性能更好的填料来替换原有填料。

2.2 气阀常见故障分析及维修技巧

2.2.1 常见故障分析

气阀常见故障主要包括泄漏、卡阻和损坏。泄漏是 气阀故障中较为常见的问题。由于气阀在频繁开启和关 闭过程中,密封面容易受到气体压力、温度变化和杂质 等因素的作用,导致密封不严。这种泄漏不仅会降低压 缩机的压缩效率,还可能对气阀本身造成损伤。卡阻是 气阀另一种常见的故障。在压缩机运行过程中,气阀需 要频繁地开启和关闭,如果气阀内部存在杂质或结焦等 现象,就可能导致气阀无法正常开启或关闭。卡阻问题严重时,甚至可能导致气阀完全失效,影响压缩机的正常运行。损坏是气阀最为严重的故障之一。由于气阀在工作过程中承受较大的气体压力和温度变化,如果气阀材质不佳或制造质量存在问题,就可能导致气阀在运行过程中出现裂纹、断裂等损坏现象。一旦气阀损坏,就需要及时更换新的气阀,以确保压缩机的正常运行。

2.2.2 维修技巧

首先,要定期检查气阀的泄漏情况。通过观察压缩 机运行时的气体压力变化、听取气阀开启和关闭时的声 音以及拆卸气阀进行检查等方法,及时发现并更换泄漏 严重的气阀。在更换气阀时,应选用质量可靠、性能稳 定的气阀,并确保新气阀的型号和规格与原气阀一致。 其次,对于卡阻问题,可以通过清洗气阀来解决。在清 洗气阀时, 应使用专用的清洗剂和工具, 将气阀内部的 杂质和结焦等清除干净。同时,还要检查气阀的开启和 关闭力度是否合适,如果力度过大或过小,都可能导致 卡阻问题。因此,在调整气阀开启和关闭力度时,应根 据压缩机的运行工况和气阀的性能特点进行合理设置[2]。 此外,对于损坏的气阀,应及时更换新的气阀。在更换 气阀时,除了要确保新气阀的型号和规格与原气阀一致 外,还要对气阀的安装位置、固定方式等进行仔细检 查,确保新气阀能够正确安装并牢固固定。同时,还要 对新气阀进行性能测试,确保其性能符合设计要求。

2.3 导向轴承常见故障分析及维修技巧

2.3.1 常见故障分析

导向轴承常见故障主要包括磨损、松动和损坏。磨 损是导向轴承最为常见的故障之一。在压缩机运行过程 中,导向轴承需要承受活塞杆的径向载荷,同时还会受 到气体压力和温度变化等因素的影响。长期运行下来, 导向轴承表面会逐渐磨损,导致其与活塞杆之间的间隙 增大。这种间隙的增大不仅会加剧活塞杆的晃动和振 动,还可能对其它部件造成损伤。松动是导向轴承另一 种常见的故障。由于导向轴承在安装过程中需要固定在 轴承座上,如果固定螺栓松动或轴承座位置调整不当, 就可能导致导向轴承松动。松动的导向轴承在运行时无 法有效支撑和导向活塞杆,进而影响压缩机的正常运 行。损坏是导向轴承最为严重的故障之一。由于导向轴 承在工作过程中承受较大的力和温度变化, 如果轴承材 质不佳或制造质量存在问题, 就可能导致轴承在运行过 程中出现裂纹、断裂等损坏现象。一旦导向轴承损坏, 就需要及时更换新的轴承,以确保压缩机的正常运行。

2.3.2 维修技巧

首先,要定期检查导向轴承的磨损情况。通过观察 轴承表面的磨损程度、测量轴承与活塞杆之间的间隙以 及听取压缩机运行时的声音等方法,及时发现并更换 磨损严重的轴承。在更换轴承时,应选用质量可靠、性 能稳定的轴承, 并确保新轴承的型号和规格与原轴承一 致。同时,还要严格按照安装要求进行安装,确保轴承 能够正确安装并牢固固定。其次,对于松动问题,可以 通过紧固轴承固定螺栓或调整轴承座的位置来解决。在 紧固固定螺栓时,应使用合适的工具和方法,确保螺栓 能够牢固地固定在轴承座上。同时,还要检查轴承座的 位置是否合适,如果位置不当,就可能导致轴承松动或 无法有效支撑和导向活塞杆。因此,在调整轴承座位置 时,应根据压缩机的运行工况和活塞杆在轴承中的居中 情况进行合理设置。此外,对于损坏的导向轴承,应及 时更换新的轴承。在更换轴承时,除了要确保新轴承的 型号和规格与原轴承一致外,还要对轴承的安装位置、 固定方式以及与其它部件的配合关系等进行仔细检查, 确保新轴承能够正确安装并与其它部件配合良好。同 时,还要对新轴承进行性能测试,确保其性能符合设计 要求。

2.4 活塞常见故障分析及维修技巧

2.4.1 常见故障分析

活塞常见故障主要包括磨损、卡死和开裂。磨损是活塞最为常见的故障之一。在压缩机运行过程中,活塞需要频繁地与气缸壁接触并产生相对运动,由于摩擦力的作用,活塞表面会逐渐磨损。随着磨损程度的加剧,活塞与气缸壁之间的间隙会增大,从而加剧泄漏问题。此外,磨损还可能导致活塞表面出现凹凸不平的现象,进而影响压缩机的压缩效率。卡死是活塞另一种常见的故障。由于活塞在运行时需要承受较大的气体压力和温度变化,如果活塞与气缸壁之间的间隙过小或存在杂质等现象,就可能导致活塞无法正常运动而被卡死。卡死问题严重时,甚至可能导致活塞与气缸壁之间产生摩擦火花,引发安全事故。开裂是活塞最为严重的故障之一。由于活塞在工作过程中承受较大的力和温度变化,如果活塞材质不佳或制造质量存在问题,就可能导致活塞在运行过程中出现裂纹或断裂等损坏现象。

2.4.2 维修技巧

首先,要定期检查活塞的磨损情况。通过观察活塞 表面的磨损程度、测量活塞与气缸壁之间的间隙以及听 取压缩机运行时的声音等方法,及时发现并更换磨损严 重的活塞。在更换活塞时,应选用质量可靠、性能稳定 的活塞,并确保新活塞的型号和规格与原活塞一致。同 时,还要严格按照安装要求进行安装,确保活塞能够正确安装并牢固固定在活塞杆上。其次,对于卡死问题,可以通过清洗活塞、更换损坏的部件或调整活塞与气缸壁之间的间隙来解决。在清洗活塞时,应使用专用的清洗剂和工具,将活塞表面的杂质和结焦等清除干净^[3]。同时,还要检查活塞与气缸壁之间的间隙是否合适,如果间隙过小或存在杂质等现象,就可能导致活塞卡死。因此,在调整间隙或更换损坏部件时,应根据压缩机的运行工况和活塞的性能特点进行合理设置。此外,对于开裂的活塞,应及时更换新的活塞。在更换活塞时,除了要确保新活塞的型号和规格与原活塞一致外,还要对活塞的安装位置、固定方式以及与其它部件的配合关系等进行仔细检查。

2.5 连杆常见故障分析及维修技巧

2.5.1 常见故障分析

连杆的常见故障主要可以归结为弯曲、变形和断裂三大类。弯曲和变形是连杆在长期使用过程中,由于受力不均或过载等因素导致的。当连杆发生弯曲或变形时,其运动轨迹将发生改变,无法与曲轴和活塞保持正常的配合关系,进而影响压缩机的压缩效率和稳定性。严重时,弯曲或变形的连杆还可能与其他部件发生碰撞,导致更严重的机械故障。断裂则是连杆故障中最为严重的一种。连杆断裂通常是由于材质问题、加工缺陷、过载或疲劳等因素引起的。一旦连杆断裂,压缩机将无法正常工作,甚至可能引发严重的安全事故。

2.5.2 维修技巧

首先,定期检查连杆的弯曲和变形情况。这可以通过使用专业的检测工具或仪器进行,一旦发现连杆有弯曲或变形的迹象,应及时更换新的连杆,以避免故障进一步扩大。其次,对于连杆断裂的问题,应立即停机并更换新的连杆。在更换过程中,要仔细检查导致连杆断裂的原因,如连杆螺栓是否松动、是否存在过载现象等,并采取相应的措施进行预防。例如,可以加强连杆螺栓的紧固力度,确保其在运行过程中不会松动;同时,也可以优化压缩机的运行参数,避免过载现象的发生。

2.6 大小头瓦常见故障分析及维修技巧

2.6.1 常见故障分析

大小头瓦在使用过程中也常会出现一些故障,主要 包括磨损、松动和损坏。磨损是大小头瓦最常见的故障 之一。由于连杆在运动过程中会产生摩擦,长时间运行后,大小头瓦的表面会逐渐磨损,导致其与曲轴和十字头销之间的间隙增大。这不仅会加剧摩擦和磨损,还可能影响压缩机的压缩效率和稳定性。松动则是大小头瓦在安装或使用过程中,由于固定螺栓松动或大小头瓦座位置调整不当等原因导致的。一旦大小头瓦松动,就可能在运行过程中脱落或损坏,进而引发更严重的机械故障。损坏则是大小头瓦在受到外力冲击或过载时,可能发生的故障。损坏的大小头瓦无法继续支撑连杆,将导致压缩机无法正常工作。

2.6.2 维修技巧

首先,定期检查大小头瓦的磨损情况。这可以通过观察大小头瓦的表面光洁度、测量连杆大头瓦和小头瓦与轴径之间的间隙等方式进行。一旦发现大小头瓦磨损严重,应及时更换新的大小头瓦,以避免故障进一步扩大。其次,在更换大小头瓦时,要确保新大小头瓦的型号和规格与原大小头瓦一致。同时,还要严格按照安装要求进行安装,确保大小头瓦与连杆大头和小头之间的配合紧密、稳定。最后,对于大小头瓦松动的问题,可以通过紧固大小头瓦固定螺栓或调整大小头瓦座的位置来解决。

结语

未来,随着科技的飞速发展和管理的持续优化,化工机械设备的维修工作正朝着更高效、更智能、更可靠的全新阶段迈进。智能化诊断系统的应用,将使得故障检测与定位更加精准快速,大幅缩短维修周期。同时,远程监控与维护技术的普及,将打破地域限制,实现设备的即时响应与高效修复。此外,结合大数据与人工智能技术,可以预测设备故障趋势,提前制定维修计划,进一步降低停机风险。在管理的层面,精细化、信息化的管理模式也将推动维修工作更加科学、有序,为化工企业的持续稳健发展奠定坚实基础。

参考文献

[1]杨丽颖.化工机械设备故障原因和故障维修分析[J]. 中国设备工程,2024(22):150-152.

[2]张德生.化工机械设备常见故障分析[J].化工设计通讯,2021,47(6):79-80+98.

[3]许有宽.化工机械设备故障分析及维修管理措施探讨[J].中国科技期刊数据库工业A,2021(2):123-124.