风力发电机零部件供应商质量管理策略研究

赵昊龙 西安中车永电捷力风能有限公司 陕西 西安 710200

摘 要:本文聚焦风力发电机零部件供应商管理。当前管理现状不佳,供应商选择侧重价格,忽视技术、设备、体系及交付能力,且未考量研发潜力;质量管控流程在原材料检验、生产过程监控、成品检验环节均存漏洞;质量监督考核机制不完善,考核指标不合理。针对这些问题,提出科学选择供应商,构建涵盖多维度的评估体系并考量研发潜力;完善质量管控流程,制定严格标准、加强过程监控、规范成品检验;建立有效质量监督与考核机制,加强监督、优化考核指标。通过瑞能新能源科技有限公司案例可知,实施这些策略后,产品质量显著提升,售后成本降低,市场竞争力增强,为行业供应商管理提供借鉴。

关键词: 风力发电机; 零部件供应商; 质量管理策略; 案例分析

引言

在全球大力发展清洁能源的趋势下,风力发电行业 蓬勃兴起。风力发电机作为核心设备,其零部件质量关 乎发电效率、设备可靠性与运行成本。而零部件供应商 的管理水平直接决定了零部件质量。当下,供应商管理 存在诸多困境,如选择不当导致零部件质量不稳定,质 量管控流程漏洞百出致使不合格品流入,质量监督与考 核机制缺陷阻碍供应商质量改进。深入研究供应商管理 策略,解决现存问题,对提升风力发电机质量,推动风 力发电行业健康发展意义重大,这也正是本文深入探讨 的核心所在。

1 风力发电机零部件供应商管理现状及问题分析

1.1 供应商选择问题

(1) 在选择风力发电机零部件供应商时,许多企业 往往过于关注价格因素,而忽视了供应商的技术能力、 生产设备、质量管理体系、交付能力等关键指标。对于 双馈电机的零部件,如焊接结构件,其制造工艺复杂, 需要供应商具备先进的焊接技术和设备, 以及严格的质 量控制流程来保证焊接质量。若仅以价格作为主要选择 标准,可能会选择到技术能力不足的供应商,导致焊接 结构件质量不稳定,影响电机的机械性能。同样,定转 子铁芯的制造精度对电机的电磁性能影响极大, 供应商 的生产设备精度和工艺水平至关重要, 若评估指标不涵 盖这些方面,可能引入质量不达标的铁芯供应商。(2) 风力发电行业技术更新换代较快, 对零部件的性能和质 量要求不断提高。部分企业在选择供应商时,没有充分 考虑供应商的研发能力和技术创新潜力。以电磁线为 例,随着电机效率提升的需求,对电磁线的导电性能、 耐高温性能等提出了更高要求。若供应商缺乏研发投入 和技术创新能力,将难以满足未来产品升级的需求,无 法持续提供符合要求的零部件,影响风力发电机制造商 的产品竞争力和市场拓展能力。

1.2 质量管控流程问题

(1)对于双馈电机的零部件生产,原材料质量是基 础。例如,绝缘材料的质量直接关系到电机的电气绝缘 性能, 若绝缘材料的绝缘电阻、耐热等级等指标不符合 要求,将严重影响电机的安全运行。然而,在实际质量 管控流程中, 部分企业对原材料检验不够重视, 检验标 准不明确, 检验设备落后, 检验人员专业素质不足, 导 致一些不合格的原材料流入生产环节。如对采购的电磁 线,未进行严格的导电率、漆膜厚度及附着力等检测, 使得制成的绕组在电机运行过程中可能出现电阻过大、 发热严重甚至短路等问题。(2)供应商在零部件生产 过程中, 缺乏有效的质量监控机制。以焊接结构件生产 为例,焊接过程中的电流、电压、焊接速度等参数对焊 接质量有重要影响, 若生产过程中没有实时监控这些参 数,及时调整焊接工艺,可能导致焊接缺陷,如气孔、 裂纹、未焊透等。对于定转子铁芯的冲片制造,冲片的 尺寸精度、毛刺大小等指标若在生产过程中未得到严格 控制,会影响铁芯的叠装质量和电磁性能。此外,一些 供应商生产现场管理混乱,缺乏规范的操作流程和质量 记录,一旦出现质量问题,难以追溯原因和责任人。 (3) 成品检验是零部件质量管控的最后一道防线,但部 分企业在成品检验环节存在诸多问题[1]。检验项目不完 整,对于一些关键性能指标,如空冷器的散热效率、绝 缘材料的电气强度等,未进行全面检测。检验方法不科 学, 部分企业仍采用传统的抽样检验方法, 抽样比例不 合理,难以有效发现批量产品中的质量问题。检验设备

老化、精度不足,也影响了检验结果的准确性。这些问题导致一些不合格的零部件流入风力发电机制造企业, 给产品质量带来隐患。

1.3 质量监督与考核问题

(1)企业对供应商的质量监督往往局限于定期的现 场审核, 审核频率较低, 无法及时发现供应商在生产过 程中出现的质量问题。而且现场审核内容主要侧重于质 量管理体系文件的审查,对实际生产过程的监督不够深 入。在监督过程中,缺乏有效的沟通机制,企业与供应 商之间信息传递不及时、不准确,导致问题反馈和解决 效率低下。例如,企业发现供应商提供的绝缘材料存在 轻微质量问题,但由于沟通不畅,供应商未能及时采取 整改措施,问题逐渐积累,影响了后续批次产品质量。 (2)对供应商的考核指标设置不合理,过于注重交货期 和价格等经济指标,而对质量指标的考核权重较低。即 使设置了质量考核指标,也往往不够细化和量化,难以 准确评估供应商的质量表现。例如,对于零部件的合格 率,没有区分关键质量特性和一般质量特性的合格率, 无法针对性地对供应商的质量问题进行分析和改进。考 核结果应用不充分,对于质量表现优秀的供应商,缺乏 有效的激励措施,而对于质量问题较多的供应商,惩罚 力度不够,难以促使其改进质量。

2 风力发电机零部件供应商质量管理策略

2.1 科学选择供应商

(1) 为了构建全面的供应商评估体系,需综合考虑 多方面指标。在技术能力上,重点考察双馈电机零部件 制造技术的掌握度,如焊接工艺水平、自动化焊接设备 及检测技术,以及铁芯制造工艺对高导磁率、低损耗的 保证能力。生产设备方面,评估先进性、自动化程度和 维护状况,确保满足高精度、高效率生产需求。质量管 理体系上, 审查ISO认证及内部流程完善度, 涵盖原材料 检验、过程控制、成品检验等环节。同时,重视供应商 的交付能力,包括生产计划、物流配送及按时按量交付 能力。此外, 财务状况和企业信誉也不容忽视, 确保供 应商经营稳定、信誉良好。此评估体系旨在全面、客观 地衡量供应商实力,为合作选择提供有力依据,保障供 应链的稳定与高效。(2)深入了解供应商的研发投入和 技术创新能力,考察其是否设有专门的研发机构,研发 人员的数量和专业素质,以及在新产品、新技术研发方 面的成果。例如,对于电磁线供应商,关注其在新型电 磁线材料研发方面的进展,是否能够紧跟行业技术发展 趋势, 开发出满足更高性能要求的电磁线产品。了解供 应商与科研机构、高校的合作情况,借助外部科研力量 提升自身技术水平的能力。评估供应商对市场变化的响应能力,能否根据风力发电行业的发展需求,及时调整产品结构和生产工艺,以适应未来产品升级的需要。通过综合评估供应商的发展潜力,选择具有长期合作价值的供应商,为风力发电机制造企业的可持续发展提供保障。

(1)为确保双馈电机零部件质量,需制定严格的原

2.2 完善质量管控流程

材料检验标准。针对绝缘材料,明确绝缘电阻、击穿电 压、耐热等级等指标,采用高精度测试仪进行检验;电 磁线则关注导电率、漆膜厚度、柔韧性等, 确保符合标 准。为此,配备先进检验设备,如电阻测试仪、绝缘耐 压测试仪等,保障检测准确性。同时,加强检验人员培 训,提升其专业技能和质量意识,确保能准确运用设备 判断原材料质量。此外,建立原材料检验追溯体系,详 细记录每批次检验信息,包括时间、人员、结果等,便 于质量问题追溯[2]。此体系旨在从源头把控质量,确保 零部件性能稳定可靠, 为双馈电机制造提供坚实保障。 (2)要求供应商建立完善的生产过程质量控制体系,制 定详细的生产工艺规程和质量控制计划。在焊接结构件 生产过程中, 对焊接参数进行实时监控和记录, 采用自 动化焊接设备和焊接质量监测系统,确保焊接质量的稳 定性。对于定转子铁芯冲片制造,严格控制冲床的冲裁 力、模具间隙等参数,采用高精度的冲模和在线检测设 备,保证冲片的尺寸精度和表面质量。加强生产现场管 理,规范员工操作流程,要求员工严格按照工艺规程进 行生产操作,避免因人为因素导致质量问题。建立生产 过程质量记录制度,对生产过程中的关键质量数据进行 记录,如每道工序的加工参数、检验结果等,以便及时 发现质量波动,采取纠正措施。(3)制定全面科学的 成品检验方案,明确空冷器、绝缘材料等检验项目、方 法及标准。空冷器需检测外观、尺寸、散热效率、气密 性;绝缘材料则全面测试电气强度、绝缘电阻、耐老化 性。采用先进无损检测、性能测试等技术设备,确保检 验准确可靠。根据零部件特性和生产量, 合理设定抽样 方案,有效检测质量问题。建立不合格品处理流程,及 时通知供应商整改,分析原因并采取纠正预防措施,防 止复发。此方案旨在确保成品质量,提升产品竞争力, 保障双馈电机稳定运行。

2.3 建立有效的质量监督与考核机制

(1)增强对供应商的质量监督,采用定期现场审核 与不定期飞行检查结合,深入生产现场细查各环节。建 立有效沟通机制,及时反馈质量问题,共商解决方案。 运用信息化技术,构建供应商质量监控平台,实时远程 监控生产与质量数据。通过完善监督机制,确保供应商维持高质量生产状态,及时发现并解决质量问题,提升供应链整体质量水平,保障产品竞争力。此举措为质量监督提供新路径,助力企业稳健发展。(2)科学设置供应商考核指标,提升质量指标权重,细化为零部件合格率、关键质量特性合格率、质量问题投诉率等,明确计算方法和目标值。同时,综合考虑交货期、价格、售后服务等指标,构建全面考核体系。定期考核评价,分级管理供应商,优秀供应商享优先合作、增订单、价格优惠等激励;质量问题多者则受警告、罚款、减订单直至取消资格等惩罚,促使供应商持续改进,提升整体供应水平。此体系确保供应商质量,增强供应链竞争力。

3 案例分析

3.1 案例企业背景

瑞能新能源科技有限公司专注于双馈电机的生产, 在风力发电领域积累了丰富经验。其产品广泛应用于国 内外35个大型风力发电场,总装机容量达600万千瓦。公 司拥有6条先进的风力发电机生产线,年产能可达1200 台,在行业内颇具知名度,市场份额占比约18%。为保障 产品质量,公司对零部件供应商管理高度重视,然而在 实际运营中,仍面临着诸多供应商质量管理难题。

3.2 实施供应商质量管理策略前的问题

瑞能新能源科技有限公司在供应商选择上曾存在严重问题,评估指标过于单一,主要基于价格考量,导致约35%的供应商提供的零部件质量不稳定。焊接结构件焊接缺陷率高达18%,绝缘材料绝缘性能不达标比例为12%,电磁线导电性能检测准确率仅为75%,定转子铁芯冲片尺寸偏差超标比例达15%。这些问题严重影响了电机的机械强度、电磁性能和发电效率,导致电机运行时出现异常振动、输出功率波动和过热现象,缩短了电机使用寿命。同时,质量监督机制不完善,每季度仅进行一次现场审核,且审核深度不足,考核指标不科学,质量指标权重仅占25%,导致供应商对质量重视不足。这些问题频发,严重影响了公司产品质量和市场声誉,每年售后维修成

本高达600万元。因此,公司急需改进供应商选择和质量 管控流程,以确保产品质量和市场竞争力的提升。

3.3 实施供应商质量管理策略后的成效

实施供应商质量管理策略后,成效斐然。新引入供应商技术能力强、设备先进、体系完善,占比达85%。如焊接结构件供应商采用先进技术和设备,焊接缺陷率降至2%以下。质量管控流程强化,原材料检验准确率提升至99%以上,生产过程监控加强,定转子铁芯冲片尺寸精度达标率99%,发电效率提高约9%。成品检验严格,空冷器散热效率检测全覆盖,电机过热现象减少至3%以内^[3]。质量监督机制完善,现场审核频次增加,考核指标优化,质量权重提升至65%。新策略实施后,公司产品一次合格率升至97%,售后维修成本降低30%至420万元,市场竞争力增强,订单量增长30%。这些成果彰显了供应商质量管理策略的有效性和重要性,为公司可持续发展奠定了坚实基础。

结束语

风力发电机零部件供应商管理是一项复杂且系统的 工程,贯穿供应商选择、质量管控及监督考核各个环 节。通过精准剖析现存问题,切实落实科学选择、完善 流程、有效监督考核等策略,能够显著提升零部件质 量。以瑞能新能源科技为例,成功经验已证明这些策略 的有效性。在风力发电行业持续发展进程中,相关企业 应持续重视并不断优化供应商管理策略,积极引入新技术、新理念,加强与供应商合作,共同提升产品质量, 为风力发电行业的高质量、可持续发展筑牢根基,助力 行业在清洁能源领域稳步前行。

参考文献

[1]高丽峰.试论风力发电机零部件的防腐处理[J].装饰装修天地,2019(23):370.

[2]张建福,沈锋,吴洋.风力发电机组高强螺栓不同润滑工艺的影响研究[J].机械工程师,2024(7):75-78,81.

[3]张建福,沈锋,吴洋.基于FTA的风力发电机组液压系统故障分析及解决方案[J].节能,2023,42(12):108-110.