火电厂热工自动化的发展和展望

李兵华

山西兆光发电有限责任公司 山西 霍州 031400

摘 要:火电厂热工自动化作为提升发电效率与运行安全性的关键技术,近年来取得了显著发展。从广泛的技术应用到高度的系统集成,再到智能化水平的提升,热工自动化系统不断进化。未来,智能化控制的普及、过程控制仪表的创新、APS技术的广泛应用以及系统集成与互操作性的增强,将进一步推动火电厂热工自动化向更高效、更智能的方向发展,为电力行业的可持续发展奠定坚实基础。

关键词:火电厂;热工自动化;发展;展望

引言

火电厂热工自动化是电力生产过程中的重要环节,它涉及热力系统的监测、控制与优化,对于提高发电效率、保障运行安全具有重要意义。随着科技的进步,热工自动化系统经历了从简单仪表控制到复杂集成系统的演变,其技术水平和应用范围均得到了显著提升。本文旨在探讨火电厂热工自动化的发展现状与未来展望,以期为相关领域的研究与实践提供参考。

1 火电厂热工自动化概述

火电厂热工自动化是一项关键的技术应用,旨在通 过一系列自动化仪表和装置(包括计算机系统)对火力 发电厂的热力生产过程进行高效监视与控制。该技术的 应用使得火电厂能够实现安全、经济和高效运行, 是现 代电力工业不可或缺的一部分。火电厂热工自动化的基 本概念涵盖了热功率测量、自动控制、信息处理、故障 报警以及自动保护等多个方面。它基于数据驱动的控制 过程,实现了无人值守的自动化操作,显著增强了发电 设备的安全性和可靠性。通过实时监测和分析热力生产 过程中的各种物理量和化学量,以及生产设备的工作状 态, 热工自动化技术能够及时发现潜在问题, 并采取相 应的控制措施,从而有效规避重大安全事故的发生。在 火电厂中, 热工自动化技术广泛应用于燃煤锅炉、水轮 机和热网等关键系统的控制中,燃煤锅炉的自动化控制 系统能够稳定燃烧过程, 优化给水控制和汽水循环, 从 而提高发电效率。水轮机自动化控制系统则负责控制其 启停、负荷调节和自动化调度等功能,确保水轮机运行 的稳定性和可靠性。热网控制系统则通过实时监测和优 化调控,提高供热系统的稳定性和运行效率。随着物联 网技术的不断发展, 热工自动化系统还能够实现对火力 发电设备和系统的大数据采集和分析。通过数据分析技 术,可以智能化地监测和分析发电设备的运行状态、能

耗分布以及故障预警等方面,为进一步提高发电效率和 降低能耗提供有力支持。因此,火电厂热工自动化技术 的发展前景广阔,将在未来电力工业中发挥更加重要的 作用。

2 火电厂热工自动化的发展现状

2.1 技术应用广泛

在现代火电厂运营中, 热工自动化技术全方位渗透 于各个关键环节。以温度控制为例, 高精度的温度传感 器被广泛部署于锅炉、汽轮机等核心设备,其能够精 准捕捉设备运行时的实时温度数据。这些传感器基于热 电效应、热阻效应等原理工作,将温度物理量转化为电 信号输出。在锅炉燃烧控制中, 传感器反馈的温度信息 直接影响着燃料与空气的配比调节。通过自动化控制算 法,系统依据温度变化动态调整给煤机转速以及送风 机、引风机的风量,确保锅炉内的燃烧始终维持在最佳 工况,既保证了燃烧效率,又避免了因超温对设备造成 的损坏。压力控制技术同样不可或缺,压力传感器在蒸 汽管道、除氧器等部位实时监测压力参数。对于蒸汽管 道,稳定的压力输出是保证汽轮机高效运行的关键,自 动化系统根据压力传感器反馈,调节汽轮机进汽阀门的 开度,实现蒸汽压力的精准控制,保障汽轮机输出功率 的稳定。在除氧器中,压力控制与温度控制协同作用, 通过自动化手段维持除氧器内特定的压力和温度条件, 以高效去除水中溶解氧,防止设备腐蚀,延长设备使用 寿命。这些技术在火电厂中的广泛应用,极大地提升了 设备运行的稳定性与可靠性[1]。

2.2 系统集成度高

火电厂热工自动化系统集成度不断提升,呈现出高度一体化的态势。DCS(集散控制系统)作为核心集成平台,将分散在各个区域的控制单元紧密整合。在硬件层面,DCS通过高速数据通信网络连接现场控制器、输

入输出模块以及工程师站、操作员站等设备。现场控制 器负责采集现场各类热工参数,如温度、压力、流量 等,并根据预设控制策略输出控制信号。输入输出模块 则实现了现场信号与控制器之间的电气隔离和信号转 换。工程师站用于系统的组态、编程和维护, 操作员站 则为运行人员提供直观的操作界面,方便对整个热工自 动化系统进行监控和管理。DCS还与其他辅助系统深度 集成,例如,与电气控制系统的集成,实现了热工与电 气设备之间的联动控制。在机组启动过程中, 热工系统 完成设备暖机、冲转等操作后, 自动向电气系统发出并 网请求, 电气系统响应后完成机组并网, 整个过程无缝 衔接,提高了机组启动的效率和可靠性。与输煤、除灰 除渣等辅助生产系统的集成,使得整个火电厂生产流程 实现了统一调度和协调运行。通过系统集成,火电厂各 生产环节的信息得以共享,设备之间的协同工作能力显 著增强,有效提升了火电厂整体运行效率和管理水平。

2.3 智能化水平提升

随着人工智能、大数据等先进技术的发展,火电厂 热工自动化的智能化水平得到显著提升。在设备故障诊 断方面,利用大数据分析技术对设备运行过程中产生的 海量数据进行挖掘和分析。通过建立设备正常运行状态 下的参数模型,实时对比当前运行参数与模型数据,一 旦发现参数偏离正常范围,系统能够及时发出预警,并 通过数据分析定位故障原因。例如,通过对汽轮机振动 数据的长期监测和分析,能够提前预测轴承磨损、叶片 故障等潜在问题,为设备维护检修提供科学依据,避免 突发故障对生产造成的影响。智能优化控制在热工自动 化中也得到广泛应用。基于人工智能算法的控制系统能 够根据机组实时运行工况和负荷变化, 自动优化控制策 略。以锅炉燃烧优化为例,智能控制系统通过学习大量 的运行数据,不断调整燃料量、风量以及燃烧器配风等 参数,寻找最佳燃烧工况,实现降低煤耗、提高燃烧效 率和减少污染物排放的多重目标。在机组负荷调节方 面,智能控制系统能够快速、精准地响应电网负荷变化 指令,通过优化汽轮机进汽调节和锅炉燃烧控制,实现 机组负荷的平稳、高效调节,提升火电厂对电网的适应 性和灵活性。智能化水平的提升, 使火电厂热工自动化 系统具备了更高的自适应性、预测性和优化能力, 为火 电厂的高效、安全、绿色运行提供了有力支撑[2]。

3 火电厂热工自动化的未来展望

3.1 智能化控制普及

(1)在火电厂热工自动化进程中,智能化控制的普及是关键趋势。随着人工智能与机器学习技术的迅猛发

展,火电厂将逐渐引入先进的智能算法,对各类复杂工 况进行精准预测与实时调控。智能控制系统可依据历史 数据与实时运行参数, 自主学习并优化控制策略, 从而 显著提升机组运行效率。例如,通过对锅炉燃烧过程的 智能分析, 能够动态调整燃料与空气配比, 使燃烧更充 分,在降低能耗的同时提高发电效率,有效减少污染物 排放。(2)智能化控制还将实现设备的故障预测与诊 断。借助大数据分析与深度学习模型,系统可对设备运 行状态进行全方位监测,提前察觉潜在故障隐患。以汽 轮机为例,智能诊断系统能够根据振动、温度等参数变 化,准确判断轴承磨损、叶片故障等问题,并及时发出 预警,为设备维护提供充足时间,避免突发故障引发停 机,保障电厂稳定运行。这种智能化的设备管理模式, 将大幅降低设备维护成本,延长设备使用寿命。(3)未 来,智能化控制将在火电厂各个环节深度渗透,从机组 启停、负荷调节到辅助系统运行,实现全流程自动化与 智能化。智能控制系统不仅能适应多变的电网需求,还 能在极端工况下确保机组安全稳定运行,推动火电厂向 高效、可靠、智能的方向发展,提升其在能源市场的竞 争力。

3.2 过程控制仪表创新

(1)过程控制仪表作为火电厂热工自动化的关键设 备,创新发展至关重要。新型传感器技术将不断涌现, 具备更高的精度、灵敏度与可靠性。例如,采用纳米材 料制造的温度传感器,能够更快速、精准地测量高温部 件温度, 为机组运行提供精确数据支持。压力传感器将 朝着微型化、数字化方向发展,实现压力信号的高速采 集与传输,提升系统响应速度。(2)仪表的智能化水平 也将大幅提升。智能仪表可集成数据处理、自我诊断与 通信功能,能够对采集到的数据进行实时分析,并根据 预设规则自动调整测量参数。如流量仪表,不仅能精确 测量介质流量,还能对流量波动进行智能补偿,确保测 量结果的准确性。智能仪表可通过无线网络与控制系统 无缝连接, 实现远程监控与操作, 极大提高了仪表维护 与管理的便捷性。(3)在过程控制仪表创新过程中,还 将注重其与自动化系统的融合。新型仪表将具备更好的 兼容性与开放性, 能够与不同厂家的自动化设备协同工 作。例如,采用统一通信协议的仪表,可轻松接入电厂 的分布式控制系统, 实现数据共享与协同控制。这种创 新发展将优化火电厂热工自动化系统架构, 提高系统整 体性能,为火电厂高效运行提供坚实保障。

3.3 APS技术广泛应用

(1) APS(自动发电控制)技术在火电厂热工自动化

领域的广泛应用将带来显著变革。APS系统能够根据电网 负荷需求与机组运行状态,自动优化发电计划,实现机 组的经济调度。通过实时监测电网频率、电压等参数, APS系统可迅速调整机组出力, 确保电网供需平衡, 提高 电力系统稳定性。在电网负荷波动较大时,APS技术可精 准控制机组增减负荷速率,避免机组过度调节导致的能 源浪费与设备损耗。(2) APS技术的应用还能提升机组 的启停效率。传统机组启停过程依赖人工操作,流程复 杂且耗时较长。APS系统可实现机组启停的全自动化控 制,按照预先设定的优化程序,精准控制各个设备的启 动与停止顺序, 大幅缩短机组启停时间。这不仅能降低 机组启停过程中的能耗,还能减少设备因频繁启停造成 的磨损,延长设备使用寿命,提高机组的可用率。(3) 随着技术不断发展, APS系统将与智能电网深度融合, 具 备更强适应性与灵活性。它能根据电网实时情况和新能 源接入比例, 动态调整发电策略, 如新能源大发时降低 火电机组出力,新能源出力不足时迅速提升火电出力。 这种应用将使火电厂更好地适应能源结构的调整变化, 在新型电力系统中扮演更加重要的支撑角色。

3.4 系统集成与互操作性增强

(1)在火电厂热工自动化未来发展中,系统集成与互操作性增强是必然趋势,随着电厂规模扩大与技术复杂度增加,不同厂家、不同类型的自动化设备与系统大量应用。实现这些系统的有效集成,能够打破信息孤岛,提升电厂整体运行效率。通过建立统一的数据平台,可整合分散在各个控制系统中的运行数据,为生产决策提供全面、准确的信息支持。例如,将锅炉控制系统、汽机控制系统与电气控制系统的数据进行集成,可实现对机组整体运行状态的综合分析,优化机组运行参数。(2)增强系统互操作性是实现集成的关键。未来,火电厂将采用标准化的通信协议与接口规范,确保不同

设备与系统之间能够顺畅通信与协同工作。例如,采用OPCUA(开放式平台通信统一架构)等通用通信标准,可使现场仪表、控制器与上位机之间实现无缝连接,数据传输更加稳定、高效。通过建立统一的设备描述模型,可实现设备的即插即用功能,极大地方便了设备的安装、调试与维护工作,有效降低了系统集成的成本。(3)系统集成与互操作性的增强还将促进火电厂与外部系统的互联互通。例如,与电网调度系统的深度集成,可实现电厂与电网的实时信息交互,更好地响应电网调度指令,提高电力系统运行的协同性。与能源管理系统、环保监测系统等的集成,可实现能源优化管理与环保达标排放,推动火电厂绿色、可持续发展。这种全方位的系统集成与互操作性提升,将构建更加智能、高效

结语

的火电厂热工自动化体系[4]。

综上所述,火电厂热工自动化在技术进步与市场需求的双重驱动下,正朝着更加智能化、集成化的方向发展。未来,随着智能化控制的普及、过程控制仪表的创新以及系统集成与互操作性的增强,热工自动化系统将进一步提升火电厂的运行效率与安全性。我们也应关注新技术、新方法的不断涌现,为火电厂热工自动化的持续发展注入新的活力。

参考文献

[1]习云鹏.火电厂热工自动化控制技术应用及展望[J]. 数字化用户,2024(5):69-70.

[2]牛志龙.火电厂热工自动化控制的应用实践及发展方向[J].今日自动化,2021(4):165-166,178.

[3]孙大为.火电厂热工自动化控制的应用及发展[J].今日自动化,2021(10):11-12.

[4]高健,曹跃.火电厂热工自动化控制技术应用及展望 [J].建筑工程技术与设计,2020(27):3895.