基于机械液压技术的矿山机电设备故障分析

般 斌

河北冀中邯峰矿业有限公司 河北 邯郸 056004

摘要:本文深入探讨基于机械液压技术的矿山机电设备故障。通过对矿山机电设备中机械液压系统的常见故障类型进行详细阐述,分析故障产生的原因,结合实际案例提出针对性的故障诊断方法与有效的解决措施,旨在为提升矿山机电设备的运行稳定性、可靠性以及维护效率提供理论支持与实践指导,降低设备故障率,提高矿山生产效率。

关键词: 机械液压技术; 矿山机电设备; 故障分析; 故障诊断

引言

在矿山开采领域,机电设备稳定运行是高效生产的基石。机械液压技术的广泛应用,赋予设备高功率密度、精准控制和良好动态响应,大幅提升性能与效率。但矿山恶劣环境,如高粉尘、潮湿、强振动和频繁负载变化,使这类设备故障频发。故障不仅中断生产、增加成本,还威胁人员安全。故而,深入探究基于该技术的故障分析方法,对保障矿山安全、提升效益意义非凡。

1 矿山机电设备中机械液压系统的构成与工作原理

矿山机电设备中的机械液压系统主要由动力元件、 执行元件、控制元件、辅助元件以及工作介质组成。动 力元件(如液压泵)将机械能转换为液压能,为系统 提供动力;执行元件(如液压缸、液压马达)则将液压 能转换为机械能,实现设备的各种动作;控制元件(如 各种阀类)用于控制液压系统中油液的压力、流量和方 向,以满足设备不同的工作要求;辅助元件(如油箱、 过滤器、油管等)起到辅助系统正常运行的作用;工作 介质(通常为液压油)在系统中传递能量。其工作原理 基于帕斯卡定律,即密闭容器内的液体在受到压力作用 时,压力将等值传递到液体的各个部分。当动力元件输 出高压油液时,通过控制元件调节油液的参数,驱动执 行元件完成相应的动作,从而实现矿山机电设备的各种 作业功能。

2 常见故障类型

2.1 液压油污染故障

液压油污染是导致机械液压系统故障的常见原因之一。在矿山环境中,粉尘、颗粒杂质极易混入液压油中。当油液污染程度超过一定限度时,会造成液压元件的磨损加剧。例如,微小颗粒进入液压泵的间隙中,会划伤泵的内部零件表面,降低泵的容积效率和使用寿命。同时,污染的油液还可能堵塞过滤器、节流孔等,影响系统的正常流量分配,导致执行元件动作不稳定,

出现爬行、抖动等现象[1]。

2.2 液压系统泄漏故障

液压系统泄漏可分为内泄漏和外泄漏。内泄漏主要发生在液压元件内部,如液压泵的内部密封损坏,导致高压腔的油液向低压腔泄漏,使泵的输出流量不足,系统压力下降。外泄漏则是指油液从系统管路、接头、液压缸活塞杆密封处等部位泄漏到外部环境中。外泄漏不仅造成油液浪费,污染工作环境,还可能导致系统压力无法建立,设备无法正常工作。在矿山设备运行过程中,由于振动、冲击以及长期的磨损,管路接头松动、密封件老化失效等情况较为常见,从而引发液压系统泄漏故障。

2.3 液压泵故障

液压泵作为液压系统的动力源,其故障对系统影响巨大。常见的液压泵故障包括泵体磨损、内部零件损坏、气蚀等。泵体磨损可能是由于油液中的杂质颗粒、长时间的高压工作以及润滑不良等原因引起的。当泵体磨损严重时,会导致泵的容积效率降低,输出流量和压力不稳定。内部零件损坏,如齿轮泵的齿轮磨损、叶片泵的叶片断裂等,会直接影响泵的正常工作。气蚀现象则是由于液压泵吸油不畅,油液中混入空气,在高压区气泡破裂产生冲击,损坏泵的内部零件,同时也会产生噪声和振动。

2.4 液压缸故障

液压缸是将液压能转换为机械能的执行元件,其常见故障有活塞杆伸出或缩回速度异常、液压缸爬行、活塞密封泄漏等。活塞杆伸出或缩回速度异常可能是由于系统流量不足、液压缸内部泄漏或者负载阻力变化过大等原因导致的。液压缸爬行现象通常是由于油液中混入空气、液压缸导轨润滑不良、活塞杆与缸筒不同心等因素引起的。活塞密封泄漏会导致液压缸的推力或拉力下降,影响设备的工作性能。

3 故障原因分析

3.1 环境因素

矿山开采现场的恶劣环境是导致机电设备故障的重要因素之一。高粉尘环境中,粉尘颗粒容易通过油箱呼吸孔、管路接头等部位进入液压系统,污染液压油。潮湿的环境可能使金属零部件生锈,影响其机械性能,加速密封件的老化。此外,矿山作业中频繁的振动和冲击,会使设备的连接部位松动,导致管路泄漏、元件损坏等故障^[2]。

3.2 维护管理因素

设备维护管理不善也是引发故障的常见原因。例如,未按照规定的时间和要求对液压油进行更换和过滤,导致油液污染严重。对设备的日常巡检不细致,未能及时发现潜在的故障隐患,如管路的轻微泄漏、密封件的早期磨损等。在设备维修过程中,若维修人员技术水平不足,操作不规范,可能会在安装、调试过程中引入新的故障,如零件安装不到位、密封件损坏等。

3.3 设备选型与设计因素

如果在矿山机电设备选型时,未能充分考虑实际工况和工作要求,选择的设备规格、性能参数与实际需求不匹配,可能导致设备在运行过程中承受过大的负载,加速设备的磨损和老化,增加故障发生的概率。此外,在设备设计阶段,如果液压系统的设计不合理,如系统压力过高或过低、流量分配不均、散热措施不足等,也会影响设备的正常运行,引发各种故障。

3.4 操作因素

操作人员的不当操作同样会引发机电设备故障。例如,在设备启动前未进行必要的检查,带故障启动设备;在设备运行过程中,频繁地启停、过载运行,或者未按照操作规程调整系统参数等。这些不当操作会使设备处于非正常工作状态,加剧设备的磨损,缩短设备的使用寿命,进而导致故障的发生。

3.5 元件质量因素

液压系统中使用的元件质量参差不齐,如果选用了质量不合格的元件,如密封件的密封性能差、液压泵的制造精度低等,在设备运行过程中,这些元件容易出现故障,影响整个系统的正常工作。而且,一些假冒伪劣元件在市场上流通,矿山企业在采购过程中如果不加以甄别,使用了这些低质量元件,将会给设备运行带来极大的隐患。

4 故障诊断方法

4.1 基于油液分析的诊断方法

液压油在矿山机电设备的液压系统中, 扮演着极为

关键的角色,不仅承担着能量传递的重任,还肩负着润 滑与散热的功能。其物理和化学性质的任何细微变化, 都宛如设备运行状态的"晴雨表",能够直观地反映系 统是否处于健康状态。因此,对液压油的相关性质进行 精准检测,成为诊断设备故障的重要切入点。在物理性 质检测方面, 粘度是一项核心指标。在实际复杂的矿山 作业环境中,液压油的粘度极易受到温度波动、长时间 使用以及遭受污染等因素的影响。当油液被污染或者发 生氧化变质时,其分子结构改变,粘度就会偏离正常范 围。过高的粘度会加大油液在管路和元件中的流动阻 力,增加系统能耗,致使设备运行迟缓;过低的粘度则 难以在摩擦表面形成有效的油膜,导致泄漏问题加剧, 降低系统的容积效率。通常在实验室环境下,会借助乌 氏粘度计等专业仪器,精确测量液压油的运动粘度,并 与标准数值进行对比,以此来判断粘度是否异常。通过 这种基于油液分析的诊断方法,能够及时察觉设备潜在 故障,为设备的稳定运行提供有力保障[3]。

4.2 基于振动分析的诊断方法

矿山机电设备运行时, 因机械部件运动、液压冲击 及负载变化等因素产生复杂振动信号,这些信号携带设 备运行状态信息。设备出现故障时,振动特性显著改 变。振动信号采集是诊断基础,矿山环境中压电式加速 度传感器因灵敏度高、频率响应范围宽被广泛应用。传 感器安装位置关键,需选在能反映设备关键部件振动特 征处,如液压泵外壳、液压缸缸体。安装时严格按操作 规程,确保传感器与设备表面紧密接触,保证采集信号 真实可靠。采集信号后,运用频谱分析、时域分析处 理。时域分析关注振动信号随时间的变化规律,通过计 算均值、峰值、有效值等参数,初步判断设备运行状 态。如振动信号峰值明显增大,可能表示设备出现异常 冲击载荷。频谱分析将时域信号转换为频域信号,分析 不同频率成分能量分布,深入揭示设备故障特征。不同 故障类型对应特定频率成分,液压泵齿轮磨损故障可能 在特定啮合频率及其倍频处出现能量峰值;液压缸爬行 故障可能与低频振动成分相关。对比正常与故障状态频 谱特征,结合设备结构和工作原理,可准确识别故障类 型、定位故障部位。

4.3 基于压力检测的诊断方法

液压系统压力是反映其工作状态的关键参数,正常工作时各部位压力应处于设计规定范围内。通过在系统关键部位安装高精度压力传感器,实时监测压力动态变化,能够快速且准确地判断系统是否存在泄漏、堵塞等故障。在选择压力传感器时,需综合考量系统工作压力

范围、精度要求以及矿山恶劣的环境条件。由于矿山环 境中设备面临着高粉尘、强振动等恶劣工况, 因此应选 用具备抗干扰、耐冲击振动能力的压力传感器。同时, 传感器的安装位置也需精心设计, 以确保能够准确反映 系统关键部位的压力变化,如液压泵出口、液压缸进出 油口等。安装过程中,要保证传感器安装牢固,连接管 路密封良好,从而避免测量误差。若系统某部位压力低 于正常设定值,可能存在液压系统泄漏故障,泄漏部位 可能包括管路接头、密封件、液压元件内部等。此时, 可通过逐步排查不同部位的压力变化,并结合外观检查 来确定泄漏的具体位置。例如,若液压缸活塞杆密封处 有油渗出,且进油口压力低于正常设定值,则可能是活 塞杆密封件损坏。若系统压力过高,可能是因系统堵 塞、溢流阀故障等原因导致。通过分析压力变化曲线, 结合系统结构和工作原理,便可准确判断故障原因,并 采取相应的维修措施[4]。

4.4 基于温度检测的诊断方法

液压系统在运行过程中,由于多种能量损失会转化 为热量,导致油液和设备零部件温度升高。当设备出现 故障时,如液压泵磨损、液压缸内泄等,这种能量损失 会加剧,油温会急剧上升。因此,基于温度检测的诊断 方法成为液压系统故障诊断的重要手段。在系统关键部 位安装温度传感器,可以实时监测油液和关键零部件的 温度变化。温度传感器的选择需根据测量范围、精度要 求和安装方式等因素确定,常用的有热电偶和热电阻。 热电偶响应速度快、测量范围广,适用于高温环境;而 热电阻则精度高、稳定性好,适用于对温度测量精度要 求较高的场合。安装温度传感器时,应确保其能准确反 映被测物体的温度变化,同时与被测物体充分接触,避 免测量误差。通过监测温度变化趋势,可以及时发现设 备故障隐患,防止故障恶化。每种液压系统都有特定的 工作温度范围,油温超过正常范围时,需对设备进行全 面检查维修。油温持续升高可能意味着液压泵内部零件 磨损严重或液压缸内部密封件损坏等问题。结合油液分 析、压力检测等方法,可以准确判断故障原因,并及时 采取有效的维修措施,避免设备因过热而损坏。

4.5 基于外观检查的诊断方法

外观检查作为一种简单直观且极为重要的故障诊断 方法, 在矿山机电设备故障排查中发挥着关键作用。维 修人员凭借细致观察设备外观, 能够迅速发现明显的故 障迹象,为后续深入检测与维修提供有力线索。在进行 外观检查时,首先要留意设备表面是否存在油迹。在矿 山机电设备里,液压系统外泄漏较为常见。若设备表面 出现油迹,特别是集中在管路接头、液压缸活塞杆密封 处、液压泵轴端等部位,极有可能存在外泄漏故障。外 泄漏不仅会造成油液浪费、污染环境, 还会影响系统压 力的建立。通过观察油迹的分布范围和泄漏程度,可初 步判断泄漏源头。其次,要检查液压泵、液压缸等元件 的外壳是否有变形、裂纹等情况。这些元件是重要的执 行部件,外壳的完整性直接关系到设备的正常运行。若 设备遭受异常冲击载荷或长期处于恶劣工作环境,元件 外壳可能会出现变形、裂纹。此外,还需检查设备连接 部位是否松动,像管路与接头、电气线路连接等。矿山 作业中设备振动冲击大,连接部位容易松动,及时检查 并紧固能有效预防故障发生。

结语

综上所述,矿山机电设备因多种因素易现故障。借助油液分析等科学诊断方法,能及时定位故障。日常需强化维护管理、提升人员技术、合理选型与选用可靠元件。未来,持续探索先进智能诊断预测技术,方能为矿山机电设备高效稳定运行筑牢根基,提升生产效益与安全水平。

参考文献

- [1]杨磊磊.基于机械液压技术的矿山机电设备故障分析[J].消费导刊,2020(8):230.
- [2]王丹华.基于机械液压技术的矿山机电设备故障分析[J].建筑工程技术与设计,2020(16):890.
- [3]赵俊杰.基于机械液压技术的矿山机电设备故障分析[J].矿业装备,2020(2):102-103.
- [4]石艳清.基于机械液压技术的矿山机电设备故障分析[J].商品与质量,2020(20):154.