压缩机设备故障预测性维护管理方法的应用分析

蒲文瑞 张有全 张新城 李宛志 马 坚 青海油田采气一厂 青海 格尔木 816000

摘 要:压缩机设备故障预测性维护管理方法对工业生产意义非凡,能保障生产、降低成本、提升安全与竞争力。其基于数据驱动、模型驱动及混合驱动的故障预测技术,通过数据采集与预处理、故障预测模型建立、故障预警与决策、维护执行与效果评估等步骤,可提前发现潜在故障,实现精准维护,保障设备稳定运行,为企业可持续发展助力,推动工业生产智能化、高效化发展。

关键词: 压缩机; 设备故障; 维护管理方法

引言

在工业生产中,压缩机是保障生产连续性、产品质量与企业效益的核心设备。但长期运行下,磨损、老化等问题易引发故障。传统事后维修成本高、损失大。数字技术进步催生了压缩机设备故障预测性维护管理方法,其借助传感器与数据分析算法,可实时监测运行参数,提前发现故障隐患,为维护决策提供依据。本文将深入探讨该方法的应用,分析其重要性、原理及步骤,为企业提供参考。

1 压缩机设备故障预测性维护的重要性

在工业生产领域,压缩机作为核心设备,其稳定运 行对生产流程的连续性、产品质量以及企业经济效益起 着关键作用。压缩机设备故障预测性维护的重要性愈发 凸显,已成为企业保障生产、降低成本、提升竞争力的 关键举措[1]。从生产保障角度来看,压缩机故障会导致生 产中断,给企业带来巨大损失。预测性维护借助先进的 传感器技术和数据分析算法,实时监测压缩机的运行参 数,如振动、温度、压力等,提前发现潜在故障隐患。 一旦检测到异常,维护人员可及时采取措施,避免故障 进一步恶化,确保生产流程的连续性,保障企业正常生 产运营。在成本控制方面,传统的事后维修方式成本高 昂。压缩机故障后,需要支付维修费用,还可能因停机 导致生产损失。预测性维护根据设备实际运行状况制定 维护计划,避免了过度维护,同时精准定位故障点,减 少不必要的维修工作,降低维修成本。通过预测性维护 延长设备使用寿命,减少设备更换频率,进一步降低企 业设备投资成本。安全性是压缩机运行不可忽视的重要 因素。压缩机故障可能引发爆炸、泄漏等严重安全事 故,威胁人员生命安全和企业财产安全。预测性维护能 够及时发现设备安全隐患,提前进行整改,将事故风险 降至最低,为企业安全生产保驾护航。从市场竞争角度 而言,实施预测性维护有助于企业提升生产效率和产品质量。稳定的设备运行保证了产品质量的稳定性,提高了客户满意度。生产效率的提升使企业能够在相同时间内生产更多产品,增强市场竞争力。先进的管理理念和技术应用也为企业树立了良好的形象,吸引更多合作伙伴和客户。压缩机设备故障预测性维护对企业的生产、成本、安全和竞争力都具有至关重要的意义。

2 压缩机设备故障预测性维护管理方法的技术原理

2.1 基于数据驱动的故障预测方法

基于数据驱动的故障预测方法以设备海量历史运行 数据为核心,借助机器学习算法挖掘数据中的故障特征与 规律,进而实现故障预测。该方法常用的机器学习算法丰 富多样。支持向量机(SVM)凭借其在处理小样本、非 线性及高维模式识别问题上的优势, 能在复杂的设备数 据中寻找最优分类超平面,对故障类型进行有效区分。 随机森林(RF)通过构建多个决策树并结合它们的输出 进行预测,能够降低过拟合风险,提高预测的稳定性和 准确性。长短期记忆网络(LSTM)作为循环神经网络 (RNN)的变体,擅长处理和预测时序数据,对具有时 间依赖关系的设备数据建模效果显著。以LSTM算法应用 于压缩机振动信号分析为例,压缩机运行过程中产生的 振动信号蕴含着丰富的设备状态信息。LSTM通过学习历 史振动数据中的时间依赖关系,能够捕捉到信号的细微 变化趋势。当设备出现潜在故障时,振动信号往往会提 前出现异常波动, LSTM模型可依据学习到的规律, 对这 些异常趋势进行准确预测,从而提前发现故障特征[2]。 在实际应用中,需收集压缩机全面的运行数据,涵盖振 动、温度、压力、电流等关键参数。对数据进行严格预 处理,包括数据清洗以去除噪声和异常值,特征提取以 挖掘数据中的关键信息。通过这些步骤,提高模型的准 确性和可靠性,为压缩机设备的故障预测提供坚实的数 据支撑。

2.2 基于模型驱动的故障预测方法

基于模型驱动的故障预测方法为压缩机设备故障预 测提供了重要途径,它依托于对设备深入的理解与分 析,构建出精准的模型来模拟设备运行、预测故障。该 方法的核心在于建立设备的物理模型或数学模型。物理 模型扎根于设备的结构与工作原理,全面考量设备的物 理特性与参数。以压缩机为例,在构建其物理模型时, 需细致研究压缩机的各个部件,准确把握质量、刚度、 阻尼等物理特性,如此才能精准模拟设备在实际运行中 的物理行为。数学模型则借助数学方程来描述设备的动 态行为,像状态空间模型、传递函数模型等,它们以简 洁而严谨的数学语言,刻画设备在不同状态下的输入输 出关系。以压缩机为例,建立热力学模型和动力学模型 后, 能够模拟压缩机在不同负荷和工况下的运行状态。 通过分析压缩机的性能参数变化,如排气压力、温度、 流量等,可敏锐捕捉到设备可能出现的故障迹象,如气 阀故障、活塞环磨损等。基于模型驱动的故障预测方法 优势显著,具有较高的准确性和可解释性。由于模型基 于设备的物理特性和工作原理构建, 其预测结果有坚实 的理论基础支撑,便于维护人员理解故障产生的原因。 然而,该方法的局限性也不容忽视,模型的建立需要深 入钻研设备的物理特性和工作原理,且模型复杂度较 高, 计算量大, 对计算资源和人员专业能力要求较高。

2.3 混合驱动的故障预测方法

在压缩机设备故障预测领域,混合驱动的故障预测 方法是一种融合数据驱动与模型驱动优势的创新技术。 该方法首先借助数据驱动手段,运用机器学习算法对压 缩机历史运行数据展开分析。这些数据涵盖振动、温度 等多方面参数,通过对数据的深入挖掘,能够精准提取 与故障紧密相关的特征和规律。特定频率范围的振动变 化可能预示着轴承磨损,温度的异常波动或许与冷却系 统故障相关。完成数据特征提取后,将这些关键信息输 入到压缩机的物理模型中。物理模型基于设备的结构、 工作原理及物理特性构建,它能够模拟设备在不同工况 下的运行状态。当数据特征融入物理模型后,模型可依 据设备的物理规律,对压缩机的未来运行状态进行预 测。通过分析模型输出结果,能够判断压缩机是否可能 出现故障, 如气阀故障、活塞环磨损等。混合驱动的故 障预测方法优势明显。它充分发挥了数据驱动方法对大 规模数据高效处理的能力,以及模型驱动方法对设备物 理特性深入理解的优势, 有效提高了故障预测的精度和 适应性。该方法的实现面临挑战,需要综合考虑数据和 模型的融合问题。数据特征的准确提取与有效映射、物理模型的合理构建与参数调整,以及两者之间的高效交 互,都是实现精准故障预测的关键。

3 压缩机设备故障预测性维护管理方法的实施步骤

3.1 数据采集与预处理

数据采集作为基础, 需借助各类传感器实时监测压缩 机运行参数。振动传感器可捕捉设备振动情况,温度传感 器监测温度变化,压力传感器记录压力数据,电流传感器 获取电流信息。这些传感器全方位感知设备运行状态, 将数据实时传输至管理系统。采集到的数据并非完美, 往往夹杂着噪声和异常值,影响数据质量,因此预处理 环节必不可少[3]。数据清洗是预处理的首要任务,旨在去 除噪声和异常值。噪声可能源于传感器本身的误差或外 界干扰,异常值则可能是设备突发故障或数据传输错误 导致。通过设定合理阈值、运用滤波算法等方法,能有 效剔除这些不良数据, 让数据更加纯净、准确。特征提 取是从原始数据中挖掘与故障相关的特征。以振动信号 为例,可提取频域特征,如频率成分、幅值分布等;时 域特征如均值、方差、峰值等。这些特征蕴含着设备健 康状态的关键信息,为后续故障预测提供重要依据。数 据归一化则是将不同量纲的数据统一处理, 使其具有相 同尺度。由于压缩机运行参数单位和量级不同,直接进 行分析建模会导致某些参数对结果影响过大。通过归一 化处理,可使所有数据在[0,1]或[-1,1]等区间内,消除量 纲差异,确保后续分析的准确性和稳定性。

3.2 故障预测模型建立

故障预测模型建立是压缩机设备故障预测性维护管 理方法的核心环节,旨在依据采集数据与设备特性,构 建精准预测设备故障的模型。在方法选择上,需综合考 量多方面因素。数据类型涵盖时序数据、图像数据等; 质量涉及数据准确性、完整性;数量决定数据丰富程 度;设备复杂程度则影响模型复杂度。简单压缩机设备 可能适用传统统计方法, 而数据丰富且结构复杂的压缩 机设备,混合驱动方法更具优势。混合驱动结合数据驱 动和模型驱动,数据驱动从海量数据中挖掘规律,模型 驱动基于设备物理原理构建模型, 二者优势互补, 能有 效提升预测准确性。模型建立并非一蹴而就,完成初步 构建后,需利用历史数据对模型进行严格训练和验证。 训练过程是让模型学习数据中的故障特征和规律,验证 则是检验模型预测能力。通过不断调整模型参数,如机 器学习算法中的学习率、正则化参数等, 优化模型性 能。参数调整需借助交叉验证、网格搜索等技术,在保 证模型泛化能力的前提下,提高预测精度。在训练过程

中,若发现模型对某些故障类型预测误差较大,可分析原因,调整特征选择或模型结构。持续关注新数据的输入,定期对模型进行更新和优化,以适应设备运行状态的变化。故障预测模型建立是一个动态、迭代的过程,需综合考虑数据与设备特性,科学选择方法,精心训练验证,不断优化调整,确保模型能够准确预测压缩机设备故障,为设备维护决策提供有力支持,保障设备安全稳定运行。

3.3 故障预警与决策

在压缩机设备故障预测性维护管理中, 故障预警与 决策是连接预测模型与实际维护行动的关键桥梁,对保 障设备稳定运行起着决定性作用。基于已构建的故障预 测模型,系统会持续对压缩机的实时运行数据进行深度 剖析。模型凭借强大的数据分析能力,精准捕捉设备运 行中的细微变化。一旦预测结果突破预设阈值,系统会 立即启动预警机制,通过短信、邮件、手机APP等多种渠 道,将预警信号迅速传达给维护人员,确保信息传递的 及时性与准确性。维护人员收到预警信号后, 便进入了 决策制定的核心环节[4]。他们需综合多方面因素进行全面 考量。设备的重要性是决策的重要依据,对于核心生产 环节的关键压缩机,任何故障都可能引发生产停滞,需 优先安排维护。故障的严重程度决定了维护的紧迫性, 轻微故障可按计划维护,严重故障则需紧急抢修。维护 成本也是不可忽视的因素,需在保障设备正常运行的前 提下, 合理控制成本支出。当一台关键压缩机出现轻微 故障预警时,维护人员会结合生产计划,在合适的时机 安排维修,避免对生产造成过大影响;若故障严重,则 会立即启动应急预案,调配资源进行抢修,甚至考虑更 换关键零部件。

3.4 维护执行与效果评估

在压缩机设备故障预测性维护管理中,维护执行与效果评估是确保管理方法有效落地的关键环节,形成从决策到实施再到反馈的完整闭环。(1)依据前期制定的维护决策,维护人员需有序开展对压缩机设备的维护

与维修工作。这可能涵盖零部件更换、系统调试、润滑保养等多项操作,每一环节都需严格遵循标准流程,确保维护质量。(2)维护完成后,对维护效果的评估至关重要。评估指标涵盖多个维度,设备的运行状态是直观反映,如振动、温度、压力等参数是否恢复正常范围;故障发生率则体现维护对设备可靠性的提升效果;维护成本考量了资源投入与产出效益。通过综合分析这些指标,能全面了解故障预测性维护管理方法的实际成效。

(3)评估结果不仅是检验成果的标尺,更是改进的指南。若发现故障预测存在偏差、维护措施效果不佳等问题,需深入剖析原因,可能是预测模型参数设置不合理、维护方案缺乏针对性等。针对这些问题,对故障预测模型进行优化和更新,如引入新的特征变量、调整算法参数等,以提高模型的准确性和可靠性。

结语

压缩机设备故障预测性维护管理方法革新了工业生产模式,实现了从被动维修到主动预防的跨越。它依托实时数据监测与分析,显著降低了故障率,提升了生产效能与产品质量,同时降低了维护成本,为安全生产保驾护航。此方法各环节紧密相连,形成闭环管理体系。展望未来,随着数字技术的演进,该方法将持续优化,为工业智能化、高效化发展添砖加瓦,助力企业可持续发展。我们应主动适应变革,深入探索,让这一方法绽放更大光彩。

参考文献

[1]吴建利,李东,李勇,等.浅谈压缩机故障诊断与维护处理措施[J].中国设备工程,2021(12):168-169.

[2]赵帅.往复式压缩机的维护与故障分析[J].中国石油和化工标准与质量,2024,44(2):31-33.

[3]刘斯.螺杆压缩机维护保养及故障处理探究[J].建筑工程技术与设计,2021(16):441.

[4]刘江.往复式压缩机故障诊断及维护研究[J].造纸装备及材料,2024,53(9):37-39.