提水泵站多级联动控制策略与节能优化

何 於1 张雨薇2

- 1. 丽江滇中引水工程有限公司 云南 丽江 674100
 - 2. 金安桥水电站有限公司 云南 丽江 674100

摘 要:在社会经济快速发展、用水需求持续攀升的背景下,提水泵站于水利系统中的地位愈发关键。但当前提水泵站运行面临能耗高、控制不精准等难题,增加了运行成本与能源浪费。本文深入剖析提水泵站多级联动控制策略与节能优化技术细节,针对运行现状及问题,提出全面可行的控制策略与节能优化举措,以提升提水泵站运行效率、降低能耗,推动水利事业可持续发展。

关键词: 提水泵站; 多级联动控制; 节能优化

1 引言

提水泵站作为水利系统的重要组成部分,承担着将水从低处提升至高处以满足农业灌溉、城市供水、工业用水等需求的关键任务。然而,在运行过程中,提水泵站普遍存在能耗过高、控制精度不足等问题。据相关统计显示,部分地区提水泵站的能耗在当地总用电量中占据相当比例。这不仅导致运营成本大幅增加,还造成了能源的严重浪费。因此,深入研究提水泵站多级联动控制策略与节能优化技术,对于提高泵站运行效率、降低能耗、实现可持续发展具有至关重要的现实意义。

2 提水泵站运行现状及存在的问题

目前我国多数提水泵站采用传统控制方式,依赖人工或简单自动系统进行管理,缺乏精确调控手段和有效的设备联动控制,导致运行效率低下。常见问题包括高能耗、"大马拉小车"现象以及因设备老化和维护不当加剧的能源浪费;控制不精准致使供水与需求不匹配,影响农业灌溉和城市供水;设备间缺乏协调联动,造成运行不稳定、磨损增加和水资源浪费;自动化程度低,现有系统功能单一,难以实现全面监测和智能控制,无法满足现代水利系统高效稳定的需求。这些问题限制了提水泵站的整体性能和服务质量提升。

3 提水泵站多级联动控制策略

3.1 基于水位的多级联动控制

水位是提水泵站运行的重要参数之一,其准确监测和合理控制对于泵站的稳定运行至关重要。通过在泵站的进水池、出水池等关键位置设置高精度的水位传感器,实时监测水位变化。这些水位传感器采用先进的压力传感或超声波传感技术,能够精确测量水位高度,并将数据传输至智能控制系统。智能控制系统根据预设的水位阈值进行多级联动控制。当进水池水位低于设定下

限时,系统自动增加开机台数或提高水泵转速,以增加进水量[1]。例如,若设定进水池水位下限为3米,当实际水位降至2.8米时,系统会首先启动一台备用水泵,若水位继续下降至2.6米,则会进一步提高已运行水泵的转速,确保进水池水位稳定在合理范围内。当进水池水位高于设定上限时,系统自动减少开机台数或降低水泵转速,防止进水池溢流。对于出水池水位,同样根据实际需求进行相应的控制调整。若出水池水位过高,可能会影响下游的用水安全或造成管网压力过大,系统会自动减少开机台数或降低水泵出口压力,确保出水池水位稳定在合理范围内。

3.2 基于流量的多级联动控制

流量是衡量提水泵站供水能力的重要指标,精确的 流量控制能够满足不同用户的用水需求。通过在泵站的 出水管道上安装高精度的流量计,如电磁流量计或超 声波流量计,实时监测流量变化。这些流量计具有测量 精度高、响应速度快的特点,能够准确反映泵站的供水 流量。智能控制系统根据用水需求进行多级联动控制。 当用水需求增加时,系统自动增加开机台数或调整水泵 的运行参数,以提高泵站的供水流量。例如,在农业灌 溉高峰期, 若系统监测到用水流量需求从每小时1000立 方米增加到1500立方米,会自动启动一台备用水泵,并 根据流量变化调整水泵的运行频率,确保供水流量满足 需求。当用水需求减少时,系统自动减少开机台数或降 低水泵的运行参数,避免水资源的浪费。同时,还可以 根据不同时段的用水需求特点,制定相应的流量控制策 略,实现泵站的优化运行。例如,在夜间用水低谷期, 系统会自动降低水泵的运行频率,减少供水流量,降低 能耗。

3.3 基于压力的多级联动控制

在提水泵站的供水管网中, 压力的稳定对于保证供 水质量至关重要。过高的压力可能会导致管网破裂,造 成水资源泄漏和安全隐患; 过低的压力则会影响用户 的正常用水。通过在供水管网的关键节点设置压力传感 器,实时监测压力变化。这些压力传感器采用高精度的 压力传感技术,能够准确测量管网压力,并将数据传输 至智能控制系统。智能控制系统根据预设的压力阈值进 行多级联动控制。当管网压力低于设定下限时,系统自 动增加开机台数或提高水泵出口压力,以保证管网压力 稳定。例如,若设定管网压力下限为0.3兆帕,当实际压 力降至0.28兆帕时,系统会自动提高水泵的运行频率或启 动一台备用水泵,增加供水压力。当管网压力高于设定 上限时,系统自动减少开机台数或降低水泵出口压力, 防止管网破裂。此外,还可以根据管网的拓扑结构和用 水分布情况, 合理调整泵站的运行参数, 实现管网压力 的均衡分布。例如,对于距离泵站较远或地势较高的区 域,系统会适当提高该区域的供水压力,确保用户能够 正常用水。

3.4 设备间的协同联动控制

提水泵站的各级设备之间存在着密切的联系,实现 设备间的协同联动控制是提高泵站运行效率的关键。例 如,水泵的启动和停止应与阀门的开度进行同步调整。 当水泵启动时,智能控制系统会同时向阀门发送开度调 整信号, 使阀门逐渐打开, 以避免对管网造成过大的冲 击。在阀门打开过程中,系统会根据水泵的运行参数和 管网压力情况,实时调整阀门的开度,确保水泵在高效 区运行。当水泵停止时,系统会先逐渐关闭阀门,待阀 门关闭至一定程度后,再停止水泵运行,防止管网中的 水倒流。同时, 电机与水泵之间也应实现协同控制。根 据水泵的运行需求合理调整电机的转速和功率,确保电 机在高效区运行[2]。例如,采用变频调速技术,通过智能 控制系统根据水泵的实际负荷情况,调整电机的输入频 率,从而改变电机的转速和水泵的流量、扬程。当用水 需求较小时,降低电机的转速,减少能耗;当用水需求 较大时,提高电机的转速,增加供水能力。此外,还可 以引入智能算法,如模糊控制算法、神经网络算法等, 对设备间的协同联动进行优化,进一步提高泵站的运行 效率和稳定性。

4 提水泵站节能优化措施

4.1 泵站设备选型与优化

(1)水泵选型:对于水泵选型,需依据实际用水需求进行详细水力计算,并利用先进选型软件考虑效率曲线和汽蚀性能等要素,挑选高效节能型号,避免过大或

过小造成能耗浪费或需求不足。例如,针对扬程变化大的泵站,选择陡降型扬程-流量曲线的水泵可减少能耗损失,优先选用通过国家节能认证的产品。

- (2)电机选型:应选择高效节能电机如异步电动机或永磁同步电动机。异步电动机以其结构简单、运行可靠且成本低成为常见选择,采用变频调速技术可根据不同用水需求调整转速实现节能。永磁同步电动机虽然成本较高,但因其高效率、宽调速范围等特点,在节能要求高的泵站中有应用价值。
- (3)阀门选型:应选择密封性好、阻力小的蝶阀或球阀。蝶阀适用于大口径管道,具有结构简单、体积重量轻的特点;球阀则以开关迅速、密封可靠著称,适合高密封要求场景。选择时需考虑管道压力温度等因素,确保材质规格适配,并通过智能控制系统自动调节开度,减少水流阻力,降低能耗。通过以上措施,可以有效提升泵站运行效率,达到节能目的。

4.2 泵站运行管理优化

- (1)制定合理的运行计划:根据用水需求和水位变化情况,制定合理的提水泵站运行计划。充分考虑不同季节、不同时段的用水特点,合理安排开机台数、运行时间和流量等参数。例如,在农业灌溉季节,根据作物的生长阶段和需水量,制定不同的灌溉运行计划。在作物生长初期,需水量较小,可以适当减少开机台数和运行时间;在作物生长旺盛期,需水量较大,应增加开机台数和运行时间,确保作物得到充足的灌溉。同时,还应考虑不同时段的电价差异,尽量在电价低谷期增加泵站的运行时间,降低运行成本。例如,在夜间电价较低时,可以增加泵站的供水流量,储备一定量的水资源,以满足白天的用水需求。
- (2)加强设备维护与保养:定期对提水泵站的设备进行维护与保养,确保设备的正常运行。建立完善的设备维护档案,记录设备的维护情况和运行状态,为设备的优化管理提供依据。对于水泵,应定期检查水泵的叶轮、轴承、密封等部件的磨损情况,及时更换磨损的零部件。清理水泵内部的杂物和污垢,降低水泵的运行阻力,提高水泵的运行效率^[3]。对于电机,应定期检查电机的绝缘性能、温度、振动等情况,确保电机在安全、稳定的条件下运行。对于阀门,应定期检查阀门的密封性能和操作灵活性,及时调整阀门的开度,保证阀门的正常运行。
- (3) 优化泵站布局: 合理的泵站布局可以降低水流的阻力,减少能耗。应根据泵站的地形、地貌和水源分布等情况,优化泵站的布局,缩短输水管道的长度,减

少弯头和阀门等部件的使用,降低水流的能量损失。例如,在泵站选址时,应尽量选择靠近水源和用水区域的位置,减少输水距离。在设计输水管道时,应采用合理的管径和坡度,避免管道过长和弯头过多。同时,还可以采用并联管道的方式,增加管道的过流能力,降低水流的阻力。

4.3 智能控制与优化技术的应用

- (1)引入智能控制系统:采用PLC、DCS等智能控制系统,实现提水泵站的自动化运行与监测。PLC适用于中小型泵站,具备高可靠性与强扩展性;DCS适合大型泵站,实现集中管理、分散控制。系统可根据水位、流量等实时数据自动调节水泵运行台数或转速,优化运行效率。例如,水位下降时自动增加开机台数,流量减少时则降低转速。同时支持远程监控与故障诊断,提升运行安全性与可靠性,操作人员可通过手机或电脑远程查看并控制泵站运行。
- (2)应用优化算法:引入优化算法,如遗传算法、粒子群算法等,对提水泵站的运行参数进行优化。遗传算法是一种模拟自然选择和遗传机制的优化算法,通过不断地迭代和进化,寻找泵站运行的最优参数组合。粒子群算法是一种基于群体智能的优化算法,通过粒子之间的信息共享和协作,寻找最优解。例如,可以利用遗传算法对水泵的转速、阀门的开度等进行优化调整,实现泵站的节能运行。在优化过程中,将泵站的能耗作为目标函数,将水位、流量、压力等参数作为约束条件,通过遗传算法的不断迭代和进化,找到使泵站能耗最低的运行参数组合。
- (3)建立模型预测控制:建立提水泵站的数学模型,通过模型预测控制技术,对泵站的未来运行状态进行预测和优化控制。模型预测控制可以根据历史数据和实时监测数据,预测泵站的用水需求和水位变化情况,提前调整泵站的运行参数,确保泵站的稳定运行和节能效果。例如,建立泵站的水力模型和电机模型,通过模型预测控制技术,预测在不同运行参数下泵站的能耗和供水能力。根据预测结果,提前调整水泵的转速、阀门的开度等参数,使泵站在满足用水需求的前提下,能耗最低。

4.4 能源回收与利用

- (1)压力能回收:在提水泵站的运行过程中,水泵出口的水具有一定的压力能。可以通过安装压力能回收装置,如水力透平、压力交换器等,将这部分压力能回收利用,用于驱动其他设备或补充泵站的能量需求,从而降低泵站的能耗。水力透平是一种将水流的压力能转换为机械能的设备,通过将水力透平与电机相连,可以将回收的压力能转换为电能,回馈到电网中[4]。压力交换器是一种利用压力能进行能量交换的设备,通过将高压水与低压水进行能量交换,将高压水的压力能传递给低压水,实现压力能的回收利用。
- (2) 余热利用:提水泵站的电机在运行过程中会产生大量的余热。可以通过安装余热回收装置,如热交换器等,将电机产生的余热回收利用,用于加热生活用水或其他需要热能的场合,实现能源的综合利用。热交换器可以将电机产生的余热传递给水或其他介质,使水或其他介质的温度升高。例如,在提水泵站的机房中安装热交换器,将电机产生的余热用于加热机房内的供暖系统或生活用水,每年可节约大量的能源费用。

结语

本文深入研究了提水泵站多级联动控制策略与节能优化,提出了基于水位、流量、压力的多级联动控制策略及一系列节能措施,包括设备选型优化、运行管理改进、智能控制技术和能源回收利用,有效提升了泵站效率和可靠性,降低了能耗和成本。展望未来,随着科技发展,需进一步探索智能控制技术与优化算法在泵站中的应用,提高自动化水平,并关注新能源如太阳能、风能在泵站的应用以促进绿色发展。此外,加强泵站标准化建设与规范化管理也是重要方向,旨在提升整体服务质量,为国家水安全和经济发展做出更大贡献。

参考文献

- [1]陶东,李娜,肖若富,等.多级提水泵站优化调度研究 [J].中国农村水利水电,2020,(05):123-127.
- [2]朱灵兔.农田水利工程提水泵站施工质量控制要点 [J].农业工程技术,2023,43(19):53+55.
- [3]魏临霞.农业水利工程中提水泵站运行管理问题及对策[J].新农业,2023,(09):106-108.
- [4]韩晓娟.农业水利工程中高扬程提水泵站节能降耗方法[J].南方农机,2022,53(13):169-171+183.