机械工程智能监测技术探索

白玉川

内蒙古中环晶体材料有限公司 内蒙古 呼和浩特 010000

摘 要: 机械工程智能监测技术融合多学科理论与方法,是保障设备高效运行、提升工业生产安全性的关键。多源传感器技术实现多维度数据采集,信号处理与特征提取技术挖掘数据深层信息,人工智能与机器学习技术构建智能分析模型,数据传输与通信技术确保信息实时交互。当前,该技术朝着智能化、多技术融合、高精度高可靠及全生命周期管理方向发展,其突破与创新将持续推动机械工程领域的数字化与智能化变革。

关键词: 机械工程; 智能监测; 技术探索

引言

随着工业自动化与智能化进程加速,机械工程设备复杂度与运行风险显著提升,传统监测手段已难以满足现代工业需求。智能监测技术作为融合传感器、信号处理、人工智能等多领域成果的新兴技术,为机械工程设备状态评估与故障预警提供了新路径。本文围绕机械工程智能监测技术展开,深入剖析其关键技术,并探讨未来发展趋势,旨在为该领域技术创新与工程应用提供理论参考与实践指引。

1 机械工程智能监测概述

机械工程智能监测是依托先进传感技术、数据处理 算法与人工智能手段,对机械设备运行状态进行实时感 知与分析的技术体系。在工业生产场景中, 机械设备 作为核心生产要素, 其运行状态直接影响生产效率与产 品质量, 机械工程智能监测通过在关键部位部署振动、 温度、压力等多类型传感器,构建全方位数据采集网 络,实现对设备运行参数的高频次监测。所采集的原始 数据具有多维、动态、非结构化的特点, 需借助数字信 号处理技术与机器学习算法进行深度解析。快速傅里叶 变换(FFT)等信号处理方法能够将时域信号转换为频 域特征, 提取设备振动的频率成分, 而卷积神经网络 (CNN)与长短期记忆网络(LSTM)等深度学习模型, 则可从海量数据中自动识别设备运行的正常模式与异常 特征。例如,在滚动轴承故障诊断中,智能监测系统可 通过分析轴承振动信号的频谱特征,精准识别滚动体磨 损、内圈故障等不同类型缺陷。智能监测不仅能实现故 障的早期预警,还可基于历史数据与实时监测信息,运 用剩余使用寿命(RUL)预测算法,对设备的健康状态 进行动态评估。结合数字孪生技术,构建与物理实体高 度映射的虚拟模型,通过仿真分析模拟设备在不同工况 下的性能演变,为设备维护策略制定提供数据支撑。在 复杂工业系统中,多源数据融合技术将来自不同传感器、不同时间节点的数据进行关联分析,有效消除数据噪声干扰,提升监测结果的准确性与可靠性。随着物联网、边缘计算技术的发展,机械工程智能监测正朝着实时化、智能化、自主化方向演进,持续为工业生产的高效、安全运行提供技术保障。

2 机械工程智能监测关键技术分析

2.1 多源传感器技术

多源传感器技术是机械工程智能监测的基础感知层 核心,通过协同部署不同类型传感器实现对设备运行状 态多维度数据的精准采集。温度传感器利用塞贝克效应 或热敏电阻材料特性,将设备关键部位的热量变化转换 为电信号,在高温高压工况下能精确捕捉0.1℃级别的温 度波动,有效预警轴承、电机绕组等部件的过热风险。 振动传感器基于压电效应或MEMS微机电系统,将设备 振动产生的机械位移转化为可分析的电压信号, 其频率 响应范围覆盖1Hz至10kHz, 能够有效识别齿轮箱故障、 转子不平衡等振动异常。压力传感器通过压阻效应或电 容变化原理,对液压系统管路压力、气动元件工作气压 进行实时监测, 其动态响应时间可达毫秒级, 确保在复 杂工况下准确获取压力参数。多源传感器的异构数据融 合架构采用分布式部署与同步采样策略,利用时间戳对 齐与空间坐标系映射技术,将温度、振动、压力等不同 物理量数据统一到同一分析框架,通过卡尔曼滤波、粒 子滤波等算法去除噪声干扰,构建出完整且精准的设备 运行状态感知体系,为后续故障诊断与预测性维护提供 可靠的数据基础[1]。

2.2 信号处理与特征提取技术

信号处理与特征提取技术是将原始监测数据转化为 有效诊断信息的核心环节。在时域分析层面,通过计算 均值、均方根、峭度等统计参数,能够直观反映信号的 能量分布与波动特性,例如峭度指标对早期滚动轴承故 障具有高度敏感性, 其值的突变可作为故障发生的重要 预警信号。频域分析借助快速傅里叶变换(FFT)将时 域信号转换至频域,通过频谱峰值识别设备运行的特征 频率,如齿轮啮合频率、转子旋转频率等,结合边频带 分析可有效判断齿轮磨损、轴系不对中等故障类型。时 频分析方法如小波变换与短时傅里叶变换,能够在时间-频率二维平面上展现信号的局部时变特性,对于非平稳 信号具有独特分析优势, 可精准捕捉设备启动、停机过 程中的瞬态故障特征。在特征提取阶段,基于经验模态 分解(EMD)与变分模态分解(VMD)的自适应分解技 术,能够将复杂信号分解为多个本征模态函数,有效分 离不同故障源产生的信号成分。深度学习中的卷积神经 网络(CNN)通过构建多层卷积与池化层,能够自动提 取信号中隐含的深层次故障特征,相比传统人工提取方 法, 其特征表达能力更强, 在复杂工况下的故障识别准 确率提升显著。

2.3 人工智能与机器学习技术

人工智能与机器学习技术为机械工程智能监测赋予 了自主决策与预测能力。监督学习算法在故障诊断领域 应用广泛,支持向量机(SVM)通过构建最优超平面 实现故障模式的分类, 在小样本数据条件下仍能保持较 高的诊断精度;随机森林算法利用多棵决策树的集成学 习机制,有效降低了模型的过拟合风险,在齿轮箱故障 诊断中能够准确识别断齿、裂纹等多种故障类型。无监 督学习算法如聚类分析,可根据数据的相似性将设备运 行状态划分为正常、异常等不同类别,适用于缺乏故障 样本标签的早期监测场景。深度学习模型在机械工程监 测中展现出强大优势,循环神经网络(RNN)及其变 体长短期记忆网络(LSTM), 凭借独特的记忆单元结 构,能够有效处理时间序列数据,实现设备剩余使用寿 命(RUL)的预测;深度信念网络(DBN)通过多层受 限玻尔兹曼机的堆叠, 能够自动学习数据的层次化特征 表示, 在复杂机械系统的故障诊断中具有出色的泛化能 力。强化学习算法则通过智能体与环境的交互学习,优 化设备的维护策略, 以最大化设备运行效益与最小化维 护成本为目标,实现维护资源的合理配置[2]。

2.4 数据传输与通信技术

数据传输与通信技术是保障机械工程智能监测系统 实时性与可靠性的关键纽带。在有线通信方面,工业以 太网凭借高带宽、低延迟的特性,采用确定性网络协议 (如TSN时间敏感网络)实现数据的精确传输,其传输 速率可达1Gbps甚至更高,满足高清视频监测、高频振 动数据等大容量数据的实时传输需求。现场总线技术如PROFIBUS、CAN总线,以其高可靠性与强抗干扰能力,在设备级数据采集与控制中广泛应用,支持多主站通信与冗余设计,确保在恶劣工业环境下数据传输的稳定性。在无线通信领域,5G技术凭借其超高速率、超低时延与海量连接特性,为机械工程监测带来全新突破,其空口时延可低至1ms,支持边缘计算节点与云端的实时数据交互,实现远程设备的精准控制与监测。工业物联网(IIoT)协议如MQTT、CoAP,采用轻量级通信架构,适合资源受限的传感器节点数据传输,通过发布/订阅模式实现数据的高效分发。网络安全防护技术在数据传输过程中至关重要,采用端到端加密算法(如AES高级加密标准)与身份认证机制,有效防止数据泄露与恶意攻击,保障监测数据的完整性与机密性,确保机械工程智能监测系统的安全稳定运行。

3 机械工程智能监测技术的发展趋势

3.1 智能化与自主化程度不断提高

(1)随着人工智能算法的持续演进,机械工程智能 监测系统正从被动数据采集向主动智能决策跨越。深度 学习算法能够对海量监测数据进行特征提取与模式识 别,例如卷积神经网络(CNN)可有效识别机械振动 信号中的故障特征,通过自动学习历史数据中的故障模 式,在无需人工干预的情况下预判设备潜在故障,实现 早期预警。(2)强化学习技术赋予监测系统自主优化能 力,通过与设备运行环境不断交互,动态调整监测策略 与参数设置。以智能数控机床为例, 监测系统基于强化 学习算法,根据实时加工工况自动优化传感器采集频率 与阈值, 在保障监测精度的同时降低数据冗余, 提升系 统运行效率与资源利用率。(3)自主化的智能监测系 统还体现在故障应对层面, 当检测到异常时, 系统可依 据预设规则与学习到的经验, 自动生成故障处理方案, 并通过执行机构完成应急操作。如风力发电机组的智能 监测系统, 在检测到叶片异常振动时, 能自主控制变桨 系统调节叶片角度,降低振动幅值,避免故障进一步恶 化,极大提升设备运行安全性与稳定性。

3.2 多技术融合与协同发展

(1)机械工程智能监测技术正突破单一技术的应用局限,实现传感器技术、通信技术、计算机技术等多领域深度融合。光纤传感技术与物联网技术结合,可构建分布式、高精度的监测网络,实时获取机械结构的应变、温度等多物理量信息,为复杂机械系统的状态评估提供全面数据支持。(2)大数据分析与边缘计算的协同应用,有效解决了数据传输与处理瓶颈问题。在工业现

场,边缘计算设备可对传感器采集的原始数据进行预处理与特征提取,仅将关键信息上传至云端,减少数据传输压力;云端大数据平台则利用强大的计算能力,对海量数据进行深度挖掘与分析,实现设备性能趋势预测与故障诊断,形成"边云协同"的高效监测模式。(3)虚拟现实(VR)与增强现实(AR)技术的融入,为机械工程智能监测带来全新交互体验。工程师借助AR眼镜,可在设备现场直观查看实时监测数据、故障预警信息以及维修指导流程,实现远程专家协助与智能化维护,打破空间限制,提高故障处理效率与准确性,推动监测技术从数据获取向可视化、交互式应用转变[3]。

3.3 高精度与高可靠性监测

(1)新型传感器技术的发展为高精度监测提供了硬 件基础, 纳米级MEMS传感器的出现, 可实现对机械部 件微小位移、微弱振动的精准测量, 其分辨率可达亚微 米甚至纳米量级, 能够捕捉设备运行过程中细微的状态 变化,为早期故障诊断提供关键数据。光纤光栅传感器 凭借其抗电磁干扰、高精度的特性,在高温、强电磁等 恶劣环境下,仍能稳定输出高质量监测数据。(2)数 据处理算法的优化进一步提升监测精度, 自适应滤波算 法可根据环境变化自动调整滤波参数,有效去除噪声干 扰,还原真实信号特征;基于模型的参数辨识方法,通 过建立精确的机械系统动力学模型,结合监测数据进行 参数反演,能够准确获取设备关键部件的性能参数,为 设备健康状态评估提供量化依据。(3)为保障监测系统 的高可靠性, 冗余设计与容错技术被广泛应用。在重要 监测节点采用多传感器冗余配置,一旦某传感器出现故 障,系统能自动切换至备用传感器,保障监测数据连续 性。故障诊断算法可快速定位故障传感器并及时预警, 避免因传感器失效造成监测系统误判或漏判,从而提升 整个监测系统的稳定性与可靠性。

3.4 全生命周期监测与管理

(1) 机械工程智能监测已从传统的运行阶段监测,

拓展至设备设计、制造、安装、运维直至报废的全生命 周期。在设计阶段,通过仿真模拟技术对设备性能进行 虚拟监测,提前评估潜在风险,优化设计方案;制造 过程中, 利用在线监测技术实时把控零部件加工质量, 确保产品符合设计要求,为设备全生命周期性能奠定基 础。(2)在设备运行阶段,智能监测系统持续采集设备 运行数据,结合历史数据与设计参数,构建设备健康状 态模型,实现性能退化趋势预测。通过分析设备磨损、 疲劳等退化规律,制定科学合理的维护计划,避免过度 维护与维修不足问题,延长设备使用寿命,降低运维成 本。(3)当设备进入报废阶段,监测系统仍可提供关键 数据支持, 如设备材料性能衰减数据、部件失效模式分 析等,为后续设备设计改进与新材料研发提供参考。这 种全生命周期监测与管理模式,形成了数据闭环,促进 机械工程领域的持续创新与技术迭代, 提升整个行业的 资源利用效率与可持续发展能力[4]。

结语

综上所述,机械工程智能监测技术通过多源传感器、信号处理、人工智能等关键技术的协同创新,在设备状态监测与故障诊断中发挥重要作用。其智能化、多技术融合等发展趋势,将进一步提升机械工程领域的监测水平与管理效能。未来,随着技术的持续演进,机械工程智能监测有望实现更精准的预测、更高效的决策,为工业高质量发展注入强劲动力。

参考文献

- [1]谭增鑫.智能监测技术在农业机械化生产中的应用及关键技术[J].农机使用与维修,2023(5):77-79.
- [2]王庆军,徐磊,郑春雨,等.港口大型装卸机械设备运行状态智能监测技术探讨[J].设备监理,2024(3):66-69.
- [3] 栗琦,徐海龙,张丽丽.工程机械液压系统故障诊断与智能监测研究[J].机械管理开发,2025,40(4):92-94.
- [4]蒋秀英.工程机械的状态监测与故障诊断技术[J].内燃机与配件,2024(15):76-78.