机电机械设备安装中存在的隐患及改进对策

李 帆

四川川煤华荣能源有限责任公司金刚煤矿 四川 达州 635018

摘 要: 机电机械设备安装过程中存在图纸设计偏差、基础施工缺陷、工具材料准备不足、设备定位不准、连接紧固不当、调试流程混乱等问题, 影响设备运行稳定性与安全性。针对这些问题, 需从前期准备、安装过程、调试阶段及后期验收维护等环节入手, 采取加强图纸会审、规范施工质量控制、优化组装顺序、完善调试记录、强化信息交接等改进对策。通过系统化管理与标准化操作,提升安装质量,保障设备长期稳定运行。

关键词: 机电设备安装; 隐患分析; 改进对策; 调试操作; 验收维护

引言: 机电机械设备在现代工业中具有核心作用, 其安装质量直接影响设备运行效率与生产安全。在实际 安装过程中,因图纸设计不准确、基础施工不规范、 工具材料准备不充分、安装操作不标准等问题,常导致 设备运行不稳定甚至出现故障。为确保设备安装的可靠 性,有必要深入分析各阶段存在的隐患,并提出针对性 的改进措施,以提升安装工作的科学性与规范性,为设 备安全高效运行提供保障。

1 机电机械设备安装前期准备阶段的隐患及改进对策

1.1 图纸设计与设备匹配隐患

图纸设计是安装施工的基础, 若存在尺寸偏差, 会 导致设备与基础的连接部位无法精准对接。未考虑设备 实际运行环境,如高温、潮湿或振动等因素,可能使设 计的安装结构难以适应现场条件, 引发设备运行中的稳 定性问题。设备自身参数与图纸标注不符时,安装时易 出现设备与基础空间位置冲突,增加现场调整的难度[1]。 图纸中若忽略设备运行时的动态载荷,设计的基础承载 能力可能不足,长期运行易引发结构变形。部分图纸对 设备管线接口的朝向标注不清,会导致安装时管线排布 混乱,影响后续操作空间。改进对策需加强图纸会审环 节,组织设计人员、设备供应商和安装团队共同参与。 结合设备的外形尺寸、重量分布和运行参数,对照安装 现场的空间布局、地质条件和环境特征,逐一审核设计 细节。发现尺寸标注错误或环境适配性不足的情况,及 时沟通调整设计方案。对设备接口与基础预埋件的匹配 尺寸进行反复核对,确保图纸信息与实际情况一致,从 源头减少安装时的匹配问题。

1.2 基础施工质量隐患

设备基础混凝土强度不足,难以承受设备运行时的 长期负荷,可能出现沉降或开裂,影响设备安装后的稳 定性。平整度不够会导致设备安装时受力不均,引发运 行中的振动加剧,缩短设备使用寿命。预埋件位置偏差 会使设备无法按照设计要求固定,不得不重新打孔或焊 接,破坏基础结构整体性。基础表面若存在蜂窝孔洞, 会影响设备与基础的贴合度,导致应力集中。基础周边 排水设施不完善,积水渗透可能侵蚀混凝土,降低基础 承载能力。改进对策应强化基础施工全过程的质量管 控。混凝土配比需符合设计强度要求,浇筑过程中确保 振捣充分,避免蜂窝麻面等缺陷。浇筑完成后注重养护 工作,根据环境温度控制养护时间和湿度,保证混凝土 强度稳步增长。预埋件安装时采用定位支架固定,浇筑 过程中实时监测其位置变化,发现偏移及时纠正。基础 成型后通过平整度检测工具进行全面检查,对不符合要 求的部位进行打磨或修补,同时完善周边排水系统,确 保基础质量满足安装标准。

1.3 安装工具与材料准备隐患

安装工具规格不符会导致操作无法正常进行, 如扳 手尺寸不合适难以紧固螺栓,测量工具精度不足会影响 安装定位准确性。工具性能不佳, 如起重机起重能力不 足或电动工具运行不稳定,可能延误安装进度甚至引发 安全风险。材料质量不合格,如螺栓强度不够、焊接材 料性能不达标,会降低设备连接部位的强度,留下运行 中的断裂隐患。密封材料选型不当,可能导致设备运行 时出现介质泄漏。紧固材料的规格与设备螺纹不匹配, 会造成连接松动或滑丝。改进对策需规范工具与材料的 选用标准,根据设备安装的具体要求确定工具的规格和 性能参数,材料的材质和强度等级需与设备安装标准匹 配。安装前对工具进行全面检查,测试其运行状态和精 度,确保能满足操作需求。材料进场时查验质量证明文 件,对关键材料进行抽样检验,确认其性能符合要求。 将不合格的工具和材料及时更换, 避免因准备不足影响 安装质量和进度。

2 机电机械设备安装过程中的隐患及改进对策

2.1 设备定位与找平隐患

设备就位时定位偏差过大,会导致设备与周边管线、其他设备的连接出现错位,增加后期调整的难度。 找平过程中若未准确测量,设备安装面存在倾斜,运行时各部件受力不均,易产生异常振动和噪音,长期运行可能造成部件磨损加剧^[2]。定位坐标与设计值偏差超出允许范围,还会影响设备的正常运行轨迹,降低工作精度,甚至引发安全隐患。设备与基础之间的垫片选择不当,也会影响找平效果和设备稳定性。改进对策应采用高精度的测量工具,如激光投线仪、电子水平仪等,在设备就位前对安装基准线和坐标点进行确认。定位过程中多次复核设备的X、Y轴坐标,确保与设计图纸一致。 找平工作分阶段进行,先粗调再精调,每调整一次都需重新测量水平度,直至符合安装标准。对于大型设备,可通过多点测量的方式,确保设备各支撑点的高度一致,避免局部受力过大。

2.2 连接与紧固隐患

螺栓紧固扭矩不均,会使设备法兰面受力不平衡,导致密封失效,出现介质泄漏现象。管道接口密封不良,可能引发流体渗漏,不仅造成物料浪费,还可能因泄漏介质的腐蚀性或易燃性引发安全事故。电气接线松动会导致接触电阻增大,产生局部过热,甚至引发短路故障,影响设备的电气控制系统正常运行。不同材质的连接部件未采用适配的紧固方式,易出现连接失效。改进对策需规范连接操作流程,对操作人员进行统一培训,使其掌握正确的连接方法。关键连接部位采用扭矩扳手进行紧固,按照规定的扭矩值分阶段紧固,确保每个螺栓的受力均匀。管道接口密封时,根据介质特性选择合适的密封材料,安装前检查密封面是否平整,有无划痕或杂质。电气接线时,严格按照接线图操作,接线完成后逐一检查接线端子的紧固情况,确保接触良好。加强对连接部位的检查,发现问题及时处理。

2.3 部件组装顺序隐患

违反设备组装顺序,先安装的部件可能会遮挡后续部件的安装位置,导致后续工序无法正常进行,不得不拆卸已安装部件,增加不必要的工作量。内部构件安装错位,如齿轮啮合不对中、轴承安装方向错误等,会影响设备的传动精度和运行稳定性,严重时可能导致设备无法正常运转。组装顺序混乱还可能使一些关键的定位销、密封件被遗漏安装,留下潜在故障风险。改进对策应严格遵循设备安装手册中的规定,在组装前组织安装人员熟悉手册内容,明确各部件的组装先后顺序。对于

复杂设备,可将组装流程分解为多个步骤,每个步骤明确对应的部件和操作要求。安装过程中做好安装步骤记录,详细记录每个部件的安装时间和状态,便于追溯。在安装下一个部件前,检查已安装部件的位置是否正确,是否对后续安装造成阻碍,确保组装工作有序进行。

3 机电机械设备安装后期调试阶段的隐患及改进对策

3.1 单机调试操作隐患

单机调试是检验设备单独运行性能的关键环节,未 按规程逐步加载,设备可能因瞬间承受过大负荷而导致 内部构件损坏,如电机过载烧毁、齿轮断裂等[3]。调试 过程中若忽视关键参数变化,如温度、压力、转速等, 无法及时发现设备运行中的异常,可能使小问题逐渐扩 大,最终影响设备的正常使用。部分调试人员为追求进 度,跳过必要的空载或轻载测试直接进入重载运行,会 让设备失去适应过程,增加损坏风险。调试时若未清 理设备内部残留的安装杂物,可能在运行中造成部件卡 滞,影响调试结果的准确性。改进对策需提前制定详细 的调试方案,明确各阶段的加载量、加载速度以及需要 监测的参数类型。调试时严格按照方案执行, 从空载开 始,逐步增加负荷,每一步都记录设备的运行数据。安 排专人实时监测参数变化,一旦发现数值超出正常范 围,立即停机排查,待问题解决后再继续调试。调试前 对操作人员进行培训, 使其熟悉调试流程和应急处理方 法,同时清理设备内部杂物,确保调试操作规范有序。

3.2 联动调试协调隐患

多台设备联动运行时,各设备的运行节奏不匹配会 造成工序衔接不畅,如前序设备输出量过大而后序设备 处理能力不足,易引发物料堆积;反之则会导致设备闲 置,降低整体系统的运行效率。信号传递延迟会使设备 动作不同步, 如控制系统发出启动指令后, 部分设备响 应迟缓,可能引发机械碰撞或操作失误。联动过程中若 某一台设备出现故障,未能及时传递故障信号,其他设 备继续运行,可能造成更大范围的损坏。不同设备间的 电源电压波动也可能干扰联动效果,影响调试准确性。 改进对策应建立专门的联动调试协调机制,在调试前明 确各设备的运行参数和联动逻辑。调试时安排人员同步 监测每台设备的运行状态,包括运行速度、负荷情况 等,确保设备之间的节奏协调一致。检查信号传递系 统,对线路连接、传感器灵敏度等进行全面测试,保证 信号传递准确且无延迟。设置联动保护装置, 当某台设 备出现异常时,能迅速传递信号使相关设备及时停机, 避免故障扩大。同时稳定电源电压,减少外部因素对联 动调试的干扰。

3.3 调试记录与问题处理隐患

调试记录不完整会导致设备运行状态缺乏有效追溯 依据, 当后续出现类似问题时, 难以快速判断原因。记 录内容模糊,如仅简单描述设备运行正常而未记录具 体参数,无法为设备的维护保养提供参考。发现问题后 未及时整改,将隐患带入设备正常运行阶段,可能在长 期使用中引发故障,甚至影响生产安全。部分问题虽已 记录但未明确整改责任人与期限,会导致问题被搁置, 无法得到有效解决。记录的储存方式不当,也可能导致 后期查阅困难或记录丢失。改进对策需规范调试记录的 内容与格式,要求详细记录各阶段的调试步骤、运行参 数、异常现象等信息,确保记录清晰、准确、完整。对 调试中发现的问题,及时组织人员分析原因,制定针对 性的整改方案,明确整改措施、责任人及完成期限。整 改完成后进行复查,确认问题已彻底解决。采用规范的 档案管理方式储存调试记录,便于后期查阅。只有当所 有问题都整改完毕且验收合格后,方可结束安装工作, 为设备的后续稳定运行提供保障。

4 机电机械设备安装后的验收与维护衔接隐患及改 进对策

4.1 验收标准不明确隐患

验收项目遗漏或评判标准模糊,难以全面评估安装 质量。改进对策应制定清晰的验收清单,涵盖设备性能 连接质量等关键指标,逐项检查确认。清单需根据设备 类型细化条目,对于传动设备需包含齿轮啮合间隙皮带 张紧度等细节,对于液压系统则需纳入油管接头密封性 压力波动范围等内容^[4]。评判标准需结合设备运行特性, 区分静态与动态验收要求,静态检查关注安装位置偏差 紧固螺栓扭矩等固定参数,动态验收则侧重运行时的振 动幅度噪声等级等变化指标。验收过程需按流程推进, 先进行单机空载试运行再开展负载测试,每个阶段都对 应特定检查要点。参与验收人员需熟悉设备技术手册, 理解各项指标的实际意义,避免机械套用标准导致误 判。改进对策还包括设置验收复核环节,由不同人员对 同一项目进行检查,通过交叉验证减少个人判断偏差, 确保验收结果能真实反映安装质量状态。

4.2 维护交接信息缺失隐患

安装信息未完整移交维护部门,会影响后期维护工 作开展。改进对策需建立信息交接制度,将安装过程记 录调试数据等整理归档,确保维护人员全面掌握设备 情况。移交信息应包括设备基础处理详情,如地质勘查 结果混凝土配比等,为后期基础维护提供依据。安装过 程中使用的备件型号规格需详细记录,特别是非标部件 的尺寸参数, 方便维护时采购替换。调试阶段的参数调 整记录尤为重要,如电机转向校正过程传感器校准数值 等,可作为后期故障排查的参考基准。信息载体需采用 纸质与电子档案双备份,纸质资料便于现场查阅,电子 档案利于长期保存与快速检索。交接时需组织专项会 议,由安装人员向维护人员说明设备安装难点易损部位 等关键信息,通过当面沟通澄清书面记录中可能存在的 模糊表述。改进对策还需明确信息更新责任, 规定维护 过程中发现的安装相关问题需及时反馈至档案管理部 门,确保设备信息随运行状态动态完善,为全生命周期 维护提供持续支持。

结束语

机电机械设备安装中的隐患贯穿于前期准备、安装过程、后期调试及验收维护衔接各阶段。通过加强图纸会审、强化基础施工管控、规范操作流程、完善调试机制、明确验收标准与信息交接制度等对策,可有效减少隐患。这些措施相互配合,形成完整的质量保障体系,为设备安全稳定运行奠定基础,也为安装管理工作提供了可行路径。

参考文献

- [1]王宇辉.机电机械设备安装中存在的隐患及解决方法[J].建筑工程技术与设计,2023,11(10):124-126.
- [2]刘娟.机电机械设备安装中存在的隐患与解决措施 [J].高铁速递,2022(2):37-38.
- [3]唐帆. 简述机电机械设备安装中存在的隐患及解决措施[J]. 汽车博览, 2022(21): 34-36.
- [4]姚新明.机电机械设备安装中存在的隐患及解决方法[J].国际援助,2023(9):141-143.