电气工程中的继电保护自动化运行及其维护分析

吴 超 龚 瓘 丁丰祥 华成果 吴郁森 河南省安阳市滑县滑州热电 河南 安阳 456400

摘 要:电气工程继电保护自动化通过实时监测电力系统设备与线路,依据电气量变化识别故障,经数据采集、逻辑判断等单元协同工作实现保护功能。其应用广泛但存在误动拒动、通信不畅等问题,受技术、环境和人为因素影响。日常维护需结合人工与自动化手段,定期检修并注意安全。可通过技术创新、人员培训和完善管理体系,提升其运行与维护水平。

关键词: 电气工程; 继电保护; 自动化运行; 维护分析

1 电气工程继电保护自动化运行原理概述

电气工程继电保护自动化通过自动化装置与技术, 实时监测电力系统设备与线路状态。当出现短路、过载 等故障或异常时,能迅速检测并自动发出报警或执行跳 闸操作,隔离故障设备,避免故障扩散,保障电力系统 安全运行。其工作基于电力系统故障时电气量(电流、 电压等)的变化特征,正常运行时电气量稳定,故障发 生则出现显著变化,保护装置据此识别故障并采取相应 动作。该系统主要由数据采集、逻辑判断、执行和通信 单元构成。数据采集单元采集电气量信息并传输给逻辑 判断单元,后者依据预设逻辑与算法分析数据、判断故 障,执行单元接收指令完成跳闸或报警,通信单元实现 装置与系统间的数据交互[1]。继电保护自动化运行优势显 著,它能大幅提升电力系统安全性与可靠性,快速切除 故障;提高保护准确性和灵敏性,避免误动拒动;便于 集中监控与远程管理,降低运维成本;还具备强扩展性 和兼容性,适应电力系统发展需求。

2 电气工程继电保护自动化运行现状分析

2.1 继电保护自动化运行的应用情况

在现代电气工程中,继电保护自动化技术已经得到了广泛的应用。在发电领域,无论是火力发电、水力发电还是新能源发电(如风力发电、光伏发电等),继电保护自动化系统都是保障发电机组安全稳定运行的重要设备。它能够对发电机的定子绕组、转子回路、励磁系统等进行全面保护,及时检测和处理各种故障,确保发电机组的正常发电。在输电和配电领域,继电保护自动化系统更是不可或缺。在高压输电线路中,采用了多种类型的继电保护装置,如纵联差动保护、距离保护、零序电流保护等,这些保护装置相互配合,形成了一套完整的保护体系,能够快速、准确地切除各种类型的故障,保障输电线路的安全运行。在配电系统中,继电保

护自动化装置也广泛应用于变压器、断路器、电缆线路等设备,实现对配电网的保护和控制,提高供电的可靠性和电能质量。随着智能电网建设的推进,继电保护自动化技术与其他智能技术(如物联网、大数据、云计算等)不断融合。智能变电站中,继电保护装置实现了数字化、网络化和智能化,通过信息共享和协同工作,能够更高效地应对复杂的电网运行情况。同时,继电保护自动化系统还与电网调度自动化系统紧密配合,实现了故障的快速定位、隔离和恢复供电,进一步提高了电力系统的运行效率和可靠性。

2.2 运行中存在的问题

尽管继电保护自动化技术取得了很大的发展和应 用,但在实际运行中仍然存在一些问题。首先,继电保 护装置的误动作和拒动作问题时有发生。这可能是由于 保护装置本身的质量问题、安装调试不当、保护定值设 置不合理等原因导致的。其次,继电保护自动化系统的 通信问题也较为突出,在继电保护装置与变电站自动化 系统、调度中心之间的数据传输过程中, 可能会出现通 信中断、数据丢失、传输延迟等问题。这些问题会影响 故障信息的及时传递和处理,导致运行人员无法及时了 解电网的运行状态和故障情况,延误故障处理时间。通 信网络的安全防护也是一个重要问题, 如果通信网络受 到黑客攻击或恶意软件入侵,可能会导致继电保护装置 的控制指令被篡改,严重威胁电力系统的安全运行。继 电保护自动化设备的老化和维护不及时也是影响系统正 常运行的因素[2]。随着设备运行时间的增加,一些电子元 件会出现老化、性能下降等问题,影响继电保护装置的 可靠性。而部分电力企业对继电保护设备的维护重视不 够,缺乏完善的维护计划和管理制度,导致设备得不到 及时的检修和保养,增加了设备故障的风险。

2.3 影响继电保护自动化运行的因素

影响继电保护自动化运行的因素众多, 主要包括技 术因素、环境因素和人为因素。技术因素方面,继电保 护装置的硬件质量和软件算法对其运行性能起着关键作 用。硬件元件的可靠性、稳定性直接影响保护装置的正 常工作,如果硬件元件存在质量缺陷,如芯片故障、电 路板损坏等,会导致保护装置出现误动作或拒动作。软 件算法的合理性和准确性也至关重要,不合理的算法可 能无法准确判断故障,影响保护的性能。环境因素对继 电保护自动化运行也有较大影响, 电力系统所处的自然 环境和电磁环境都会对继电保护装置产生干扰。例如, 在高温、高湿、盐雾等恶劣的自然环境下,继电保护装 置的电子元件容易受潮、腐蚀,缩短设备的使用寿命; 而强电磁干扰(如附近的高压设备、通信设备等产生的 电磁辐射)可能会导致保护装置的数据采集错误、逻辑 判断失误,引发误动作。人为因素同样不可忽视。运行 人员的操作水平和业务素质直接关系到继电保护自动化 系统的运行安全。如果运行人员在保护定值设置、设备 调试、日常维护等工作中出现失误,可能会导致保护装 置不能正常工作。缺乏完善的管理制度和监督机制,也 容易导致运行人员操作不规范、维护工作不到位等问 题,增加了系统运行的风险。

3 电气工程继电保护自动化的维护要点

3.1 日常维护内容与方法

电气工程继电保护自动化的日常维护是确保系统正 常运行的基础工作。日常维护的内容主要包括设备外观 检查、运行状态监测和数据记录等。在设备外观检查方 面,需要定期检查继电保护装置的外壳是否完好,有无 破损、变形、腐蚀等情况;检查装置的指示灯是否正常 显示,按钮、开关等操作部件是否灵活可靠;查看连接 线缆是否牢固,有无松动、破损等现象。运行状态监测 是日常维护的重要环节。通过监测继电保护装置的工作 电压、工作电流、温度等参数,判断装置是否处于正常 运行状态。例如,利用温度传感器实时监测装置内部关 键元件的温度,如果发现温度过高,可能是元件过载或 散热不良,需要及时进行检查和处理。同时,还需要监 测保护装置的通信状态,确保其与其他设备之间的数据 传输正常。数据记录也是日常维护的重要内容,运行人 员应定期记录继电保护装置的运行参数、保护动作信 息、故障报警信息等。这些数据不仅可以为设备的运行 分析提供依据,还可以在设备出现故障时,帮助技术人 员进行故障排查和分析。数据记录应做到准确、及时、 完整,并妥善保存[3]。日常维护的方法主要包括人工巡检 和自动化监测相结合,人工巡检可以直观地发现设备的

外观问题和一些明显的异常情况;而自动化监测则可以通过安装各种传感器和监测设备,实时获取设备的运行参数和状态信息,提高监测的准确性和及时性。同时利用智能巡检机器人等新技术手段,可以进一步提高日常维护的效率和质量。

3.2 定期检修与故障排查

定期检修是保障继电保护自动化系统可靠性的重要 措施。定期检修应根据设备的运行情况和厂家的建议, 制定合理的检修周期。一般来说,对于重要的继电保 护装置,每年应进行一次全面的检修;对于一些辅助设 备,可以适当延长检修周期。定期检修的内容包括硬件 检查、软件检测和功能测试等。硬件检查主要是对继电 保护装置的电路板、电子元件、电源模块等进行检查和 测试, 查看是否存在元件老化、损坏等问题, 对损坏的 元件及时进行更换。软件检测是检查保护装置的软件版 本是否为最新版本,软件功能是否正常,有无程序漏洞 或错误。功能测试则是模拟各种故障情况,对继电保 护装置的保护功能进行全面测试, 检查其是否能够准 确、快速地动作。在故障排查方面, 当继电保护装置出 现故障或异常时,技术人员应按照一定的流程进行排 查。首先,根据故障现象和保护动作信息,初步判断故 障的类型和范围。然后,利用故障录波装置、测试仪等 工具,对相关电气量进行测量和分析,进一步确定故障 点。在排查过程中,要遵循从简单到复杂、从外部到内 部的原则,逐步缩小故障范围,直到找到故障原因并进 行修复。

3.3 维护中的安全注意事项

在进行电气工程继电保护自动化维护工作时,必须 严格遵守安全操作规程,确保人员和设备的安全。首 先,在进行设备检修和维护前,必须办理相关的工作票 手续,明确工作内容和安全措施,并得到相关负责人的 批准。在工作过程中,要严格按照工作票的要求进行操 作,不得擅自扩大工作范围或更改安全措施。其次,在 对带电设备进行维护时,必须采取可靠的安全防护措 施。例如,穿戴绝缘手套、绝缘鞋等防护用具,使用绝 缘工具进行操作,防止触电事故的发生。在断开或闭合 断路器、隔离开关等设备时,要确保操作顺序正确,防 止带负荷拉合闸等误操作。另外, 在进行软件升级和数 据修改等操作时,要做好数据备份工作,防止数据丢失 或损坏。同时要注意保护装置的接地是否良好,避免因 接地不良导致设备故障或人员触电。在维护工作结束 后,要对设备进行全面检查和测试,确保设备恢复正常 运行状态,并清理工作现场,消除安全隐患。

4 提升电气工程继电保护自动化运行与维护水平的 策略

4.1 技术创新与设备升级

技术创新和设备升级是提升电气工程继电保护自动 化运行与维护水平的关键。一方面,要加强对继电保护 新技术的研发和应用。例如,利用人工智能、机器学习 等技术,提高继电保护装置的故障诊断和预测能力。通 过对大量的历史故障数据和运行数据进行分析和学习, 使保护装置能够更准确地识别故障模式, 提前预测设备 可能出现的故障,实现主动保护。另一方面,要及时对 老旧的继电保护设备进行升级换代。随着技术的不断发 展,新型继电保护装置在性能、可靠性和智能化程度等 方面都有了很大的提升。将老旧设备更换为新型设备, 可以有效解决设备老化、性能下降等问题,提高继电保 护自动化系统的整体运行水平。同时,在设备升级过程 中,要充分考虑设备的兼容性和扩展性,确保新设备能 够与现有系统无缝对接,便于后续的维护和管理。还应 加强对通信技术的研究和应用,提高继电保护自动化系 统的通信可靠性和安全性。采用先进的通信协议和加密 技术,保障数据传输的准确性和完整性,防止通信网络 受到攻击和干扰[4]。

4.2 加强人员培训与管理

人员素质是影响继电保护自动化运行与维护水平的 重要因素,因此必须加强人员培训与管理。首先,要制 定系统的培训计划,定期组织运行人员和维护人员参 加专业培训。培训内容应涵盖继电保护自动化的基本原 理、设备操作、故障排查、维护技能等方面,同时还要 关注新技术、新设备的应用。通过理论授课、实际操 作、案例分析等多种培训方式,提高人员的业务水平和 实际操作能力。其次,要建立完善的人员考核机制,对 参加培训的人员进行严格的考核,考核结果与个人的 数、晋升等挂钩,激励人员积极学习和提高自身素质。 定期对运行人员和维护人员的工作进行评估,及时发现 存在的问题,并给予针对性的指导和帮助。还要加强人 员的安全意识教育,通过安全培训、事故案例分析等方 式,提高人员的安全意识和自我保护能力,确保在工作 过程中严格遵守安全操作规程,避免因人为因素导致的 安全事故和设备故障。

4.3 完善维护管理体系

完善的维护管理体系是保障继电保护自动化系统正 常运行的重要保障。建立健全维护管理制度, 明确维护 工作的职责、流程和标准。制定详细的设备维护计划, 包括日常维护、定期检修、故障处理等工作的具体内容 和时间要求,确保维护工作有章可循[5]。加强对维护工 作的监督和管理,建立维护工作的监督机制,定期对维 护工作的执行情况进行检查和考核,确保维护工作按照 计划和标准进行。对维护工作中发现的问题,要及时进 行整改和跟踪,确保问题得到彻底解决。还要建立设备 维护档案,对继电保护自动化设备的基本信息、运行情 况、维护记录等进行详细记录。通过对设备维护档案的 分析和研究,可以了解设备的运行规律和性能变化情 况,为设备的维护和管理提供科学依据,实现设备的全 生命周期管理。同时利用信息化技术,建立维护管理信 息系统,实现维护工作的信息化、智能化管理,提高维 护管理的效率和水平。

结束语

综上所述,电气工程继电保护自动化对电力系统安全稳定运行意义重大。尽管当前运行中存在诸多挑战,但通过明确维护要点、落实提升策略,能有效解决现存问题。未来,随着技术持续创新与管理体系完善,继电保护自动化将迈向更高水平,为智能电网建设和电力行业发展提供坚实保障。

参考文献

[1]潘晟.电气工程中的继电保护自动化运行及其维护分析[J].电力设备管理,2022(4):124-126.

[2]邱炳江.电力自动化技术在电力工程中的应用[J].电子技术与软件工程,2021(05):112-113.

[3]于新军.继电保护设备的自动化可靠性分析[J].集成电路应用,2021,38(02):66-67.

[4]许彬垚.继电保护自动化中的装置及其故障检修策略[J].电气技术与经济,2023(7):289-290,293.

[5]郭恒江.电气工程中的继电保护自动化运行及其维护[J].科学与信息化,2023(8):10-12.