基坑开挖施工时邻近桩基侧向变形分析

邓少林 中冶武勘工程技术有限公司 湖北 武汉 430000

摘 要:文章深入探讨基坑开挖施工时邻近桩基侧向变形的分析。概述基坑开挖对邻近桩基侧向变形的影响机制,包括土压力变化、应力重分布等因素。详细分析邻近桩基侧向变形的形成原因,包括基坑开挖引起的土体位移、围护结构的不稳定等。还通过实际工程案例,分析不同开挖方式和支护结构对邻近桩基侧向变形的影响,并提出相应的控制措施。这些措施包括优化开挖方案、加强围护结构支撑、实施桩基加固等,旨在减小基坑开挖对邻近桩基的影响,确保工程安全。

关键词:基坑开挖;邻近桩基;侧向变形

1 基坑开挖对邻近桩基侧向变形的影响

1.1 基坑开挖过程中的土体变形机理

基坑开挖是土木工程中常见的施工过程,这一过程 往往会对邻近的桩基产生侧向变形的影响。基坑开挖不 仅改变了周围土体的应力状态,还导致了土体的位移和 变形, 进而对邻近桩基产生侧向变形的影响。基坑开挖 过程中的土体变形机理是一个复杂的过程, 随着基坑开 挖的进行, 坑内土体的卸载导致坑底土体的应力状态发 生改变, 土体的原始应力平衡被破坏。这种卸载作用使 得坑底土体产生向上的隆起, 而坑壁周围的土体则受到 水平方向上的挤压作用。由于基坑内外的土压力差异, 围护结构会产生向基坑内的位移,进一步加剧了周边土 体的变形。在基坑开挖过程中,邻近桩基的侧向变形主 要受到以下几个因素的影响:基坑与桥梁桩基之间的距 离是关键因素,随着距离的减小,基坑开挖对桩基的影 响越显著, 桩基的侧向变形也越大。基坑开挖的深度对 桩基侧向变形的影响也不容忽视。随着开挖深度的增 加,周围土体的作用力不断增大,导致基坑外地表的沉 降量增加,进而加大了邻近桩基的侧向变形[1]。桩基的刚 度也是影响侧向变形的重要因素, 刚度较大的桩基能够 更好地抵抗基坑开挖引起的侧向变形。基坑开挖过程中 的土体变形机理是一个复杂而多样的过程, 涉及土体的 应力状态改变、位移和变形等多个方面。这些变形和位 移作用通过土体传递给邻近的桩基,导致桩基产生侧向 变形。在基坑开挖过程中,需要充分考虑邻近桩基的安 全性, 采取适当的措施来减小基坑开挖对桩基侧向变形 的影响,确保工程的安全和稳定。

1.2 基坑开挖与桩基侧向位移的关系

基坑开挖与桩基侧向位移之间存在着紧密而复杂的 关系。基坑开挖作为一种常见的土木工程施工过程,其 对周围环境的影响不可忽视, 尤其是对邻近桩基的侧向 位移具有显著影响。在基坑开挖过程中, 随着挖掘深度 的增加,基坑周边的土体逐渐失去支撑,产生应力重分 布和位移。这种位移不仅表现在基坑本身的变形, 更重 要的是通过土体的传递作用,对邻近的桩基产生侧向位 移。由于基坑开挖改变了土体的应力状态,桩基在受到 水平方向上的挤压作用时,会发生侧向位移。桩基的侧 向位移与基坑开挖的多个因素密切相关, 先是基坑开挖 的深度,随着开挖深度的增加,基坑周边土体的位移量 逐渐增大,对桩基的侧向位移影响也愈发显著。在是基 坑与桩基之间的距离, 距离越近, 基坑开挖对桩基的影 响越直接、越强烈, 桩基的侧向位移也越大。土体的性 质、桩基的刚度和类型等因素也会对侧向位移产生影 响。在实际工程中,需要充分考虑基坑开挖与桩基侧向 位移之间的关系,采取适当的工程措施来减小这种影 响。例如,通过优化基坑开挖方案、加强围护结构的支 撑、采取土体加固措施等,可以有效减小基坑开挖对桩 基侧向位移的影响,保障工程的安全稳定。

2 基坑开挖对邻近桩基侧向变形的数值模拟

2.1 分析模型及建立

基坑开挖对邻近桩基侧向变形的数值模拟是一个复杂而精细的过程,它涉及了土力学、结构力学以及数值计算方法等多个领域的知识。为了准确预测和分析这一过程中桩基的侧向变形行为,需要建立合适的数值分析模型。在建立模型时,需要考虑基坑的几何形状、开挖深度、开挖方式以及周围土体的性质等因素。这些因素直接影响了基坑开挖过程中土体的应力状态和位移分布,进而决定了邻近桩基的侧向变形情况。在建模时,我们需要对这些因素进行详细的参数化描述,以确保模型的准确性和可靠性。接下来,需要选择合适的数值计

算方法来进行模拟,有限元法是一种常用的数值计算方法,它能够考虑土体的非线性特性和复杂的边界条件,因此非常适合用于模拟基坑开挖对邻近桩基侧向变形的影响。在有限元模型中,需要将土体和桩基离散化为一系列的单元,并通过单元之间的相互作用来模拟整个系统的力学行为。在建立有限元模型时,还需要考虑土体与桩基之间的相互作用,这通常通过引入接触单元或界面单元来实现,以模拟土体与桩基之间的摩擦、滑移等复杂行为^[2]。为了更准确地模拟土体的力学性质,还需要选择合适的本构模型来描述土体的应力-应变关系。通过施加边界条件和荷载,可以对模型进行求解,得到基坑开挖过程中邻近桩基的侧向变形情况。通过对比不同工况下的模拟结果,可以分析各种因素对桩基侧向变形的影响程度,从而为实际工程提供有价值的参考和依据。

2.2 材料参数设定与加载条件

基坑开挖对邻近桩基侧向变形的数值模拟是一个综 合性极强的分析过程,其中材料参数的设定与加载条件 的确定对模拟结果的准确性具有决定性的影响。材料参 数的设定是数值模拟的基础,对于基坑开挖所涉及的土 体,需要考虑其密度、弹性模量、泊松比、内摩擦角、 粘聚力等力学参数。这些参数反映了土体的基本力学性 质,对模拟结果的准确性至关重要。对于邻近的桩基, 需要设定其材料类型、截面尺寸、弹性模量、抗压强度 等参数,以反映其结构特性和承载能力。这些参数的选 取需要基于实际工程的勘察资料和试验结果, 以确保模 拟的真实性和可靠性。加载条件的确定也是数值模拟的 关键环节, 在基坑开挖过程中, 土体的应力状态和位移 分布会受到多种因素的影响,如开挖深度、开挖方式、 围护结构形式等。因此, 在数值模拟中, 需要根据实际 工程情况,设定合适的开挖步骤、开挖速度以及围护结 构的支撑方式等加载条件。还需要考虑地下水位、周围 环境的约束条件等因素对模拟结果的影响。在设定好材 料参数和加载条件后,就可以利用数值模拟软件对基坑 开挖过程进行模拟,通过模拟计算,可以得到基坑开挖 过程中土体的位移场、应力场以及邻近桩基的侧向变形 情况。通过对这些结果的分析和对比,可以深入了解基 坑开挖对邻近桩基侧向变形的影响机理, 为实际工程提 供科学的指导和建议。

2.3 模拟计算及结果分析

基坑开挖对邻近桩基侧向变形的数值模拟是一个严 谨且系统的过程,其模拟计算及结果分析对于工程实践 具有重要的指导意义。在模拟计算阶段,依据先前设 定的材料参数与加载条件,运用专业的数值模拟软件对

基坑开挖过程进行精确的模拟。这包括建立三维有限元 模型,考虑土体与桩基的相互作用,以及模拟开挖过程 中的边界条件和荷载变化。通过逐步模拟基坑的开挖过 程,软件能够计算出每一步开挖后土体的应力场、位移 场以及邻近桩基的侧向变形情况。随后,进入结果分析 阶段。我们观察并分析模拟得到的土体位移场和应力 场,了解基坑开挖过程中土体的变形和应力分布规律。 这些数据能够帮助我们深入理解基坑开挖对周围土体的 影响机制。接着,重点关注邻近桩基的侧向变形情况, 通过提取桩基在模拟过程中的位移数据, 我们可以绘制 出桩基侧向变形的时程曲线和分布云图。这些图表直观 地展示了桩基在基坑开挖过程中的侧向变形特征和规 律。通过对模拟结果的分析,可以得出以下结论:基坑 开挖对邻近桩基的侧向变形具有显著影响, 且影响程度 随着开挖深度的增加而增大; 桩基的侧向变形与基坑的 距离、土体的性质以及开挖方式等因素密切相关;通过 优化基坑开挖方案和采取适当的工程措施, 可以有效减 小桩基的侧向变形,提高工程的安全性。基坑开挖对邻 近桩基侧向变形的数值模拟是一个复杂而精细的过程。 通过模拟计算及结果分析, 我们能够深入了解基坑开挖 对桩基侧向变形的影响机理, 为实际工程提供科学的指 导和建议。这一工作不仅有助于优化工程设计,提高施 工效率,还能为类似工程提供有益的参考和借鉴[3]。

3 邻近桩基侧向变形对基坑开挖的影响与控制措施

3.1 预测邻近桩基侧向变形的方法

邻近桩基侧向变形对基坑开挖的影响与控制措施以 及预测邻近桩基侧向变形的方法是土木工程领域中极为 重要的研究课题。邻近桩基的侧向变形会对基坑开挖产 生多方面的影响, 桩基的侧向变形可能导致基坑围护结 构的稳定性下降,增加基坑坍塌的风险,桩基变形还可 能影响基坑内部的土体稳定性,导致土体失稳和沉降。 桩基的侧向变形还可能对邻近建筑物和地下管线等造成 不利影响,威胁整个工程的安全性。为了控制邻近桩基 的侧向变形,需要采取一系列有效的控制措施。在基坑 开挖前, 应充分了解周围环境和桩基的分布情况, 制定 合理的开挖方案, 在开挖过程中, 可以采用适当的支护 结构来增强基坑的稳定性,减少对桩基的影响,还可以 通过加固桩基、调整开挖顺序和速度等方法来降低桩基 的侧向变形。预测邻近桩基侧向变形的方法多种多样, 其中最常用的是数值模拟方法。通过建立三维有限元模 型,考虑土体与桩基的相互作用,可以模拟基坑开挖过 程中土体的位移场和应力场,进而预测桩基的侧向变形 情况。此外,还可以采用现场监测和试验方法来获取实 际数据,与数值模拟结果进行比对和验证,提高预测的 准确性。

3.2 降低邻近桩基侧向变形的控制措施

邻近桩基的侧向变形对基坑开挖过程具有显著的影 响,可能引发一系列工程问题,如基坑失稳、围护结构 破坏以及邻近建筑物的安全隐患等。采取有效的控制 措施来降低邻近桩基的侧向变形至关重要。优化基坑开 挖方案是降低邻近桩基侧向变形的关键, 在制定开挖方 案时,应充分考虑桩基的位置、类型和承载能力,以及 周围土体的性质和水文条件。通过合理安排开挖顺序、 控制开挖速度和深度,可以减小土体应力变化和位移, 从而降低桩基的侧向变形。加强基坑围护结构的支撑和 加固也是有效的控制措施, 围护结构的稳定性和刚度对 于抵抗土压力和限制土体位移具有重要作用。通过增加 围护结构的厚度、提高支撑刚度或采用预应力技术等措 施,可以增强围护结构的承载能力,减小基坑开挖对邻 近桩基的影响。采用土体加固措施也是降低邻近桩基侧 向变形的有效手段,通过注浆加固、土钉墙加固或深层 搅拌桩加固等方法,可以改善土体的力学性质,提高其 抗剪强度和稳定性。这样可以增加土体对桩基的约束作 用,减小桩基的侧向变形,在基坑开挖过程中实施严格 的监测和预警系统也是必不可少的,通过实时监测邻近 桩基的位移、应力和变形情况,可以及时发现异常情况 并采取相应的处理措施。建立预警系统可以提前预警可 能出现的风险,为及时采取控制措施提供有力支持。降 低邻近桩基侧向变形的控制措施包括优化基坑开挖方 案、加强围护结构支撑和加固、采用土体加固措施以及 实施严格的监测和预警系统。这些措施的综合应用可以 有效地减小基坑开挖对邻近桩基的影响,确保工程的安 全和稳定。

3.3 基坑支护及桩基加固设计建议

邻近桩基侧向变形对基坑开挖的影响是一个复杂而 关键的问题,它直接关系到工程的安全与稳定。为有效 应对这一问题,需在基坑开挖过程中采取一系列控制措施,并在支护结构及桩基加固设计上给予充分考虑。在 基坑支护设计方面,先需确保支护结构具有足够的刚度

和强度,以抵抗土体的侧向压力和变形。针对邻近桩基 的特殊情况,建议增加支护结构的埋深和横向支撑,以 提高其整体稳定性。可以采用预应力锚杆或土钉墙等主 动支护方式,增强对土体的约束能力,减少土体的侧向 位移[4]。对于桩基加固设计,应根据邻近桩基的侧向变形 程度和基坑开挖的影响范围进行具体分析, 若桩基的侧 向变形较大,可能威胁到其承载能力和稳定性,建议采 取加固措施。加固方案可以包括增加桩基的截面尺寸、 提高桩身材料的强度、采用钢筋混凝土外套等方法。还 可以在桩基周围设置注浆加固层或设置围护桩等,以增 强桩基与周围土体的整体性,减小侧向变形。在设计过 程中,还应充分考虑基坑开挖过程中的监测与反馈机 制。通过实时监测邻近桩基的侧向变形、应力变化等关 键指标,可以及时调整支护和加固措施,确保工程的安 全可控。应建立完善的预警系统,对可能出现的风险进 行提前预警,以便及时采取应对措施。

结束语

通过对基坑开挖施工时邻近桩基侧向变形的分析, 我们深刻认识到这一问题的复杂性和重要性。为确保工 程安全,必须在设计和施工过程中充分考虑邻近桩基的 影响,并采取相应的控制措施。未来,随着工程技术的 不断进步和监测手段的完善,我们有信心更好地预测和 控制基坑开挖对邻近桩基的影响,为土木工程领域的发 展做出更大的贡献。

参考文献

[1]徐建宁.深基坑开挖对邻近建筑物上部结构影响分析[J].土工基础,2019,33(06):668-673+678.

[2]李志伟.软土基坑开挖对邻近建筑物的影响分析[J]. 建筑技术,2019,50(12):1454-1457.

[3]施有志,赵花丽,李秀芳,林树枝.深基坑开挖对邻近不同基础型式建筑物影响的数值分析[J].科学技术与工程,2018,18(22):256-265.

[4]王恒.陈福全.林海.基坑开挖对邻近桥梁桩基的影响与加固分析[J].地下空间与工程学报.2019.11(05): 1257-1265.