建筑工程造价管理中的数据分析与决策支持

李贵霞

元亨工程咨询集团有限公司 山东 烟台 264600

摘 要:在建筑行业蓬勃发展的今天,建筑工程造价管理显得尤为重要。数据分析及决策支持在此领域的应用,不仅提升了管理效率,更为项目的成功实施提供了有力保障。本文通过深入探讨数据分析在建筑工程造价管理中的多维应用,以及如何通过数据分析为决策提供有力支持,旨在展现其在提升工程造价管理精准度和前瞻性方面的独特价值。

关键词: 建筑工程; 造价管理; 数据分析; 决策支持; 风险识别

引言

在建筑工程的全生命周期中,造价管理是一个动态 且复杂的过程,它涉及项目成本的控制、预算的制定以 及资源的优化配置等多个方面。随着信息技术的发展, 数据分析正在成为优化这一过程的关键工具。本文将从 数据来源的多样性、数据处理方法的进步、造价数据分析 的深入以及决策支持的实效性等几个方面进行详细探讨。

1 数据来源的多样性与整合

建筑工程造价数据的来源日益多样化,包括但不限于施工图纸、工程量清单、材料市场价格、劳务费用等。这些数据不仅来源于施工单位、设计单位,还来自材料供应商、劳务市场等。为了确保数据的全面性和准确性,需要建立一个统一的数据整合平台,实现多源数据的无缝对接和实时更新。

2 数据处理方法的创新与应用

2.1 数据清洗

数据清洗是数据处理的起点,其核心目的是消除数据中的噪声和冗余。在建筑工程造价数据中,由于数据来源的多样性和复杂性,常常存在重复、错误或不一致的数据。数据清洗通过识别、替换或删除这些不良数据,确保数据集的准确性和可靠性。例如,对于重复的条目,我们需要识别并删除;对于明显超出合理范围的数据,我们需要进行核实和修正。

2.2 数据转换

数据转换则是为了满足特定的分析需求,将数据从一种形式转换为另一种形式。在造价数据分析中,常见的数据转换包括数据的标准化和归一化。标准化是将数据按比例缩放,使之落入一个小的特定区间,如将数据转换为均值为0,标准差为1的分布。而归一化则是将数据映射到[0,1]的范围内。这些转换有助于消除数据的量纲影响,使得不同量纲的数据可以进行比较和加权。

2.3 数据插值

数据插值则是在数据集中存在缺失值时,采用某种方法估计并填补这些缺失值。在建筑工程造价数据中,由于各种原因,如数据采集设备的故障或人为记录失误,都可能导致数据的缺失。数据插值技术,如线性插值、多项式插值等,可以有效地填补这些缺失值,使得数据集更加完整,为后续的分析提供更为准确的数据基础。

2.4 数据处理的创新

然而,随着技术的快速发展,尤其是大数据和人工智能技术的崛起,数据处理方法也在不断创新。其中,机器学习算法在造价数据分析中展现出了巨大的潜力。这些算法可以对历史数据进行深度挖掘,发现数据背后的隐藏规律和趋势。例如,决策树、随机森林和神经网络等算法可以用于预测未来的造价趋势,帮助管理者做出更为准确的决策。此外,数据可视化技术也为数据处理带来了新的可能性[1]。通过将复杂的数据以直观、易懂的图形方式展现出来,如柱状图、折线图和饼图等,管理者可以更为直观地理解数据,从而更好地进行数据分析和决策。这种可视化的数据处理方式不仅提高了数据分析的效率,也使得数据分析结果更为直观和易于理解。

3 工程造价数据分析

3.1 费用构成分析

在建筑工程造价管理中,费用构成分析不仅涉及项目的总体成本,还深入到各个具体的费用项目,从而揭示出它们之间的内在联系和影响因素。首先要明确费用构成的基本元素。一般来说,建筑工程造价主要包括直接费、间接费、税金和利润等部分。直接费是与工程直接相关的费用,如人工费、材料费、机械使用费等。间接费则是与工程管理和组织相关的费用,如管理费、财务费等。这些费用在构成上有着明确的划分,但在实际工程中,它们又相互影响,形成一个复杂的费用网络。深入剖析各项费用的组成,我们可以发现它们之间的内在联系。例如,材料费用的高低可能直接影响到人工费

用的支出。如果使用了高质量的材料,可能需要更专业的技术人员进行施工,从而增加人工费用。反之,如果选择了性价比较高的材料,可能会降低人工费用。这种内在联系提示我们,在进行造价管理时,需要综合考虑各项费用的相互影响,以达到最优的成本结构。此外,费用构成分析还能帮助我们识别成本的主要影响因素。例如,在某些地区,劳动力成本可能是主要的影响因素,而在其他地区,材料成本可能占据主导地位。通过详细分析这些因素,我们可以更加精确地控制成本,提高项目的经济效益。费用构成分析可以进一步细化为对各项费用占比(各项费用在总费用中的比例)、费用增长率(某一费用项目在一定时期内的增长幅度)分析等,以更全面地了解费用结构。

3.2 动态成本分析

动态成本分析旨在紧密结合项目的实际进度和现场 情况,对成本进行实时监控和分析。这种分析方法的核 心在于"动态",即随着项目的推进,不断地对成本数 据进行采集、整理和分析,以确保项目成本始终处于受 控状态。从项目启动开始,就需要建立一个完善的成本 监控体系,对每一笔成本支出进行实时跟踪。这包括但 不限于材料采购、人工费用、机械租赁、管理费用等各 项开支。通过与实际进度的对比,可以及时发现成本超 支的苗头, 并采取相应的控制措施。动态成本分析的关 键在于数据的及时性和准确性。为了确保这一点,需要 建立一个高效的数据采集和传输系统, 以便实时获取项 目现场的成本数据[2]。同时,还需要配备专业的成本分 析人员,对数据进行深入地分析和解读,从而准确地掌 握项目的成本动态。在动态成本分析过程中,还需要特 别注意成本超支的风险。动态成本分析可以结合赢得值 分析(Earned Value Analysis, EVA)来进行,分析成本 偏差(CV):实际成本与预算成本的差异、进度偏差 (SV): 实际进度与计划进度的差异两项数据指标。通 过对比计划成本、实际成本和已完工程预算成本来评估 项目的成本和进度绩效。

3.3 预测性分析

在预测性分析中,预测模型的选择至关重要。常见的预测模型包括线性回归模型、时间序列分析、神经网络模型等。这些模型各有优势,适用于不同的场景和数据特点。例如,线性回归模型适用于探索自变量和因变量之间的线性关系,而时间序列分析则更侧重于挖掘数据随时间变化的规律。预测性分析的过程首先需要对历史数据进行深入地挖掘和整理,以确保数据的准确性和完整性。这些数据不仅包括项目成本的历史记录,还

涉及市场价格波动、政策变化等因素。通过对这些数据的综合分析,可以揭示出成本变化的潜在趋势和影响因素。在预测未来成本趋势时,预测性分析还会考虑多种可能的风险因素,如供应链的不稳定性、劳动力成本的上涨、新技术的出现等。这些因素都可能对项目的成本产生深远影响,因此在预测过程中必须予以充分考虑。预测性分析的结果通常以报告或图表的形式呈现,直观地展示了未来一段时间内成本的预测趋势。这些结果不仅为预算制定提供了重要参考,还帮助管理者更好地进行成本控制和风险防范。

4 决策支持

数据分析在决策支持方面的作用不可忽视。通过精确的数据分析,可以为决策者提供以下支持:

4.1 方案比较与优化

方案比较的首要任务是建立一个全面、客观的评价体系。这一体系应涵盖成本、时间、质量、风险等多个维度,确保每个方案都能在这些关键指标上进行量化评估。数据分析在这一过程中发挥着核心作用^[3]。通过对历史项目数据的挖掘和分析,我们可以为每个评价指标设定合理的基准和权重,从而确保评价的客观性和准确性。以下是一个简化的建筑工程造价管理方案比较与优化的示例,以及相应的成果数据表:

4.1.1 实例背景

假设一个建筑公司正在考虑三个不同的施工方案 (方案A、方案B、方案C)来完成一个商业建筑项目。 公司需要评估这三个方案的成本、工期、质量和风险, 并选择最优方案。

4.1.2 评价体系与数据表

评价体系包括四个主要维度:成本、时间、质量、 风险。每个维度都有相应的评价指标和权重。通过对每 个方案进行评分,并结合权重,可以计算出每个方案的 总得分。

表1 评价体系与数据表

方案	成本评分	时间评分	质量评分	风险评分	总得分
方案A	85	75	90	70	320
方案B	70	85	80	85	320
方案C	75	80	85	80	320

评分说明:成本评分:根据预算与估算成本的对比进行评分,分数越高表示成本越低或越符合预期。时间评分:根据预计工期与实际工期的对比进行评分,分数越高表示工期越短或越能按时完成。质量评分:根据设计方案、材料选择、施工工艺等因素综合评估质量,分数越高表示质量越好。风险评分:评估供应链风险、技术

风险、市场风险等综合因素,分数越高表示风险越低。

权重分配:成本:30%;时间:25%;质量:30%;风险:15%

总得分计算:

总得分=成本评分*30%+时间评分*25%+质量评分* 30%+风险评分*15%

4.1.3 方案选择与优化

在这个例子中,三个方案的总得分相同,但这并不意味着它们完全等同。决策者需要根据实际情况和项目需求进行进一步分析。例如,如果项目对成本要求较高,可以优先考虑成本评分较高的方案A;如果对时间要求较高,可以考虑时间评分较高的方案B。同时,方案优化也是一个重要环节。根据评分结果和实际需求,可以对某个方案进行微调。例如,如果发现方案C在质量上有优势但在成本上稍高,可以考虑在不降低质量的前提下优化成本结构,从而提升整体竞争力。

4.1.4 注意事项

评价体系和权重分配应根据具体项目和公司战略进 行调整。数据分析和评分过程应保持客观、公正和透 明。在方案优化过程中,应充分考虑各利益相关方的需 求和期望。

4.2 风险识别与应对

在建筑工程造价管理中,基于历史数据和当前项目 情况,我们可以系统地识别潜在的风险点,并据此制定 有效的应对措施。风险识别的第一步是深入分析历史项 目数据。通过对过往项目的详细剖析,可以发现那些反 复出现的问题和挑战,这些问题很可能在当前项目中再 次出现。比如,材料价格的波动、劳动力成本的上涨、 政策变动等都可能是影响项目成本的风险因素。除了历 史数据,对当前项目情况的全面把握也是风险识别的重 要组成部分。这包括项目的地理位置、气候条件、供应 链稳定性等多个方面。例如,项目所在地如果经常遭受 自然灾害,那么这就会增加项目的风险系数。在识别出 潜在的风险点后,接下来是制定有效的应对措施。这些 措施应该既具有针对性,又能灵活应对各种可能出现的 情况。例如,对于材料价格波动带来的风险,我们可以 通过与供应商签订长期合同或采用固定价格的方式来锁 定成本。对于劳动力成本上涨的风险,我们可以通过提 高施工效率、引入自动化技术等方式来降低人工成本。 此外,还需建立一个完善的风险管理机制。这包括定期 的风险评估、风险监控以及风险应对预案的制定等。通 过这些措施,我们可以确保项目在遇到风险时能够迅速 做出反应,将损失降到最低。

4.3 资源优化配置

数据分析在资源优化配置中发挥着核心作用。通过 对历史项目数据的深入挖掘和分析, 我们可以了解到各 类资源在不同项目阶段的需求变化。比如, 在项目的 初期,可能需要大量的设计人员和前期工程人员;而在 施工阶段,则需求转向施工团队和相应的施工材料。基 于这些数据,我们可以预测当前项目在各阶段的资源需 求,从而进行合理的资源配置。其次,人力资源的优化 配置尤为关键。根据数据分析的结果,我们可以确定项 目的关键岗位和人员需求,然后依据人员的专业能力和 经验进行合理分配。这样不仅能确保项目的关键环节得 到专业人员的支持,还能避免因人员配置不当而造成的 效率损失。此外,通过数据分析,我们还可以了解到哪 些材料或设备可以更有效地提高施工效率, 进而进行有 针对性地采购和使用。除了人力和物力资源,资金也是 项目中的重要资源。数据分析可以帮助我们预测项目的 资金需求,从而制定合理的资金使用计划,确保项目的 资金流稳定。

结语

建筑工程造价管理中的数据分析与决策支持对于提 升项目管理效率和准确性具有重要意义。通过深入的数 据分析和科学的决策支持,我们可以更好地理解工程造 价的构成和变动情况,优化资源配置,降低项目风险, 并为项目的成功实施提供有力保障。展望未来,随着技 术的不断进步和应用领域的拓展,数据分析将在建筑工 程造价管理中发挥更加重要的作用。

参考文献

[1]王文斌.建筑工程造价的动态管理与成本优化控制探讨[J].河南建材,2022(2):138-139.

[2]张琴琴.建筑工程造价的动态管理与成本优化控制探讨[J].华东科技:综合,2021(6):140.

[3]葛树成.基于BIM技术的项目管理大数据分析决策 [J].科技资讯,2020,18(07):47-48.