水利工程施工中渠道防渗技术

刘园杰

河北省水利水电勘测设计研究院集团有限公司 天津 300250

摘 要:水利工程施工中,渠道防渗技术是提高水资源利用效率、保障工程安全稳定运行的关键技术。本文综述 了当前主流的渠道防渗技术,包括土料防渗、水泥土防渗、塑料薄膜防渗及沥青混凝土防渗等,并对这些技术的防渗 效果、施工难度、经济成本等方面进行综合评估。同时还探讨渠道防渗技术的优化与创新方向,旨在为水利工程施工 提供科学、有效的防渗解决方案,促进水资源的可持续利用。

关键词:水利工程;渠道防渗技术;优化

引言:渠道作为水利工程的重要组成部分,其防渗性能直接关系到工程的安全稳定和水资源的有效利用。随着水资源日益紧张,提高渠道防渗效果已成为水利工程施工中的关键问题。本文旨在深入探讨水利工程施工中的渠道防渗技术,分析各种技术的优缺点,提出优化与创新策略,以期为水利工程建设提供有益的参考和借鉴。

1 水利工程施工中渠道防渗的基本概念

水利工程施工中的渠道防渗是一项至关重要的工程 技术措施。其基本概念旨在减少渠道输水过程中的渗漏 损失,从而提高水资源的利用效率。渠道防渗技术通 过改变渠道土壤的渗透性能或设置防渗层来实现。一方 面,可以通过物理机械法如压实、淤淀、抹光等减少土壤 空隙,或通过化学法掺入化学材料增强土壤不透水性。另 一方面,可设置防渗层,即进行渠道衬砌,常用材料包括 混凝土、钢筋混凝土、塑料薄膜、砌石、沥青等。这些材 料能形成一层不易透水的防护层,有效阻止水分渗漏。渠 道防渗不仅能节约灌溉用水,还能降低地下水位,防止土 壤次生盐碱化,保护土地资源[1]。它还能防止渠道的冲淤 和坍塌,加快流速提高输水能力,减小渠道断面和建筑物 尺寸, 节省占地, 降低工程费用和维修管理费用。在实 际应用中, 需根据具体工程条件、材料成本和施工难度 等因素选择合适的防渗技术和材料。应注重施工质量和 维护管理,确保防渗效果持久可靠。

2 渠道渗漏的原因分析

在水利工程施工中,渠道渗漏是一个复杂且需高度 重视的问题。它不仅会导致水资源的大量浪费,还可能 对渠道结构及周边环境造成不利影响。

2.1 地质因素

地质因素是影响渠道渗漏的主要原因之一,土壤质 地对渠道防渗性能有着直接影响。土壤中的砂砾、粉砂 等细小颗粒易于形成透水层,导致渠道水易于下渗。特 别是当渠道穿越松散沉积物、风化岩石或断层等地质结构时,渗漏问题尤为突出。这些地质结构往往具有较大的孔隙度和透水性,使得渠道水能够迅速渗透至地下。地下水位的高低也会影响渠道的防渗性能,当地下水位较高时,渠道内外水压差增大,增加了水通过土壤孔隙渗漏的风险。地下水位的波动还可能导致土壤中的水分饱和度发生变化,从而影响土壤的渗透性能。地质构造的不稳定也可能导致渠道渗漏,如地震、滑坡等自然灾害可能导致渠道结构受损,产生裂缝或变形,进而引发渗漏问题。

2.2 材料因素

材料因素是决定渠道防渗性能的关键因素之一,渠道衬砌材料的选择至关重要。如果选用的材料质地较差、强度不足或透水性强,那么渠道的防渗效果将大打折扣。例如,使用劣质混凝土或砂浆进行衬砌,可能导致衬砌层出现裂缝、脱落等问题,从而引发渗漏。材料的质量问题也可能导致渠道渗漏,如混凝土配比不当、骨料含泥量过高、水泥标号不足等,都可能导致混凝土强度不足、易开裂,进而影响渠道的防渗性能。材料的老化和腐蚀也是导致渠道渗漏的重要原因,随着时间的推移,渠道衬砌材料可能因受到水、风、阳光等自然因素的侵蚀而逐渐老化、开裂,从而降低其防渗性能。

2.3 施工因素

施工因素是影响渠道防渗性能的另一个重要方面, 施工过程中的质量控制对渠道的防渗性能有着直接影响。如果施工过程中存在偷工减料、操作不规范等问 题,那么渠道的防渗效果将无法得到保障。例如,衬砌 层的厚度不足、压实度不够、接缝处理不当等都可能导 致渗漏问题。施工技术的选择也至关重要,不同的施工 技术对渠道的防渗性能有着不同的影响。如采用机械化 施工方法可以提高施工效率和质量,但也可能因操作不 当而引发渗漏问题。而采用传统的手工施工方法虽然可以更加精细地处理细节,但施工效率较低且容易受到人为因素的影响。施工过程中的环境因素也可能对渠道的防渗性能产生影响,如温度、湿度等气候因素可能导致施工材料性能的变化,进而影响渠道的防渗效果^[2]。

2.4 运行管理因素

运行管理因素是影响渠道防渗性能的长期因素,渠道的维护管理对防渗性能有着重要影响。如果维护管理不到位,可能导致渠道衬砌层破损、裂缝等问题得不到及时修复,从而加剧渗漏问题。渠道内的杂草、垃圾等也可能堵塞排水孔或接缝处,影响渠道的防渗性能。渠道的调度运行也对防渗性能产生影响,如渠道在运行时水位过高或过低都可能对防渗层造成不利影响。水位过高可能增加渗漏风险,而水位过低则可能导致防渗层因干燥而开裂。渠道的安全监测和预警机制也是保障其防渗性能的重要措施,通过定期监测渠道的渗漏情况、水位变化等参数,可以及时发现并处理潜在的安全隐患,从而确保渠道的长期稳定运行。

3 水利工程施工中渠道防渗技术具体应用

在水利工程施工中,渠道防渗技术是提高水资源利 用效率、保障渠道安全稳定运行的关键措施。

3.1 土料防渗技术

土料防渗技术,作为水利工程领域一种历史悠久的 渠道防渗手段, 凭借其经济实惠、施工便捷的特性, 在 小规模水利项目或预算有限的情况下展现出了独特的优 势。该技术的基本原理在于,通过在渠道的底部及边坡 均匀铺设一层特定厚度的土料层,构建起一道天然的防 渗屏障。实施土料防渗技术前,对渠道基础的预处理至 关重要。这包括彻底清理基底,确保无碎石、杂草等杂 物残留,同时要对不平整处进行整平作业,为后续的土 料铺设打下坚实基础。土料的选择同样讲究, 需具备良 好的透水性和适当的可塑性,这样在压实过程中能形成紧 密、连续的防渗层,有效阻挡水分下渗。铺设过程中,对 土料的含水量和压实度的精准控制是关键。适宜的含水量 有助于土料颗粒间的紧密结合,而恰当的压实作业则能确 保防渗层达到必要的密实度和均匀性,进一步提升防渗效 能。为了进一步增强土料层的不透水性,实践中常添加适 量的石灰、水泥等改良剂,通过化学反应提升土料的整体 强度与防渗性能。排水系统的合理布局也不可忽视。在渠 道两侧设置排水沟,能够迅速排除积水,减轻渠道内部 的水压,从而降低渗漏风险。定期的维护检查与及时修 补破损、裂缝,对于保持土料防渗层的长期有效性至关 重要,确保防渗效果得以持久发挥。

3.2 水泥土防渗技术

水泥土防渗技术是一种将水泥与土料混合后形成的 防渗材料,具有强度高、耐久性好、施工方便等优点。 该技术适用于中型水利工程或需要较高防渗性能的项 目。在具体应用中,需要将水泥与土料按一定比例混合 均匀,形成水泥土混合料。将混合料铺设在渠道底部和 边坡上,并进行压实处理。压实过程中,需控制压实度 和含水量,确保防渗层的密实度和均匀性。为了提高防 渗效果,还可以对水泥土防渗层进行抹面处理,进一步 减少渗漏风险。水泥土防渗技术还需注意施工环境的控 制,在干燥、高温的环境下施工,需加强保湿措施,防 止水泥土混合料过快干燥而导致裂缝产生[3]。施工完成 后还需进行养护处理,确保水泥土防渗层充分硬化,达 到预期的防渗效果。水泥土防渗技术还需与排水措施相 结合。在渠道两侧设置排水沟,可有效排除渠道内的积 水,降低渗漏风险,还需定期检查和维护水泥土防渗 层,确保其长期稳定运行。

3.3 塑料薄膜防渗技术

塑料薄膜防渗技术是一种利用塑料薄膜作为防渗层 的渠道防渗方法,具有重量轻、强度高、耐腐蚀、施工 方便等优点。该技术适用于各种类型的水利工程,特别 是需要快速施工或需要较高防渗性能的项目。在具体应 用中,需要对渠道基础进行整平处理,并清除杂物和尖 锐物体, 以防刺破塑料薄膜, 选择合适的塑料薄膜进行 铺设。塑料薄膜应具有良好的柔韧性和不透水性,以便 在铺设过程中形成紧密的防渗层。铺设过程中, 需控制 薄膜的搭接宽度和密封性,确保防渗层的完整性。为了 提高防渗效果,还可以在塑料薄膜上铺设一层保护层, 如砂土、碎石等,以增强其抗冲刷能力。塑料薄膜防渗 技术还需注意施工过程中的质量控制。铺设过程中需确 保薄膜无破损、无气泡,并严格控制搭接宽度和密封 性,还需定期检查和维护塑料薄膜防渗层,及时发现并 处理潜在的安全隐患。塑料薄膜防渗技术还需与排水措 施相结合。在渠道两侧设置排水沟,可有效排除渠道内 的积水,降低渗漏风险。同时还需注意塑料薄膜的耐老 化性能,选择具有较长使用寿命的薄膜材料,以确保其 长期稳定运行。

3.4 沥青混凝土防渗技术

沥青混凝土防渗技术是一种将沥青混凝土铺设在渠 道底部和边坡上形成的防渗层,具有强度高、耐久性 好、抗冲刷能力强等优点。该技术适用于大型水利工程 或需要承受较大水流冲刷力的项目。在具体应用中,首 先需要制备沥青混凝土材料。沥青混凝土由沥青、骨料 (如碎石、砂砾等)和填充料(如矿粉等)组成,需按一定比例混合均匀。然后将沥青混凝土铺设在渠道底部和边坡上,并进行压实处理。压实过程中,需控制压实度和温度,确保防渗层的密实度和均匀性。为了提高防渗效果,还可以对沥青混凝土防渗层进行表面处理,如喷洒防水剂等。沥青混凝土防渗技术还需注意施工过程中的质量控制,铺设过程中需确保沥青混凝土无裂缝、无气泡,并严格控制压实度和温度。还需定期检查和维护沥青混凝土防渗层,及时发现并处理潜在的安全隐患。沥青混凝土防渗技术还需与排水措施相结合,在渠道两侧设置排水沟,可有效排除渠道内的积水,降低渗漏风险^[4]。还需注意沥青混凝土的耐老化性能,选择具有较长使用寿命的沥青材料,以确保其长期稳定运行。

4 渠道防渗技术的综合评价与优化

在水利工程施工中,渠道防渗技术是提高水资源利 用效率、保障渠道安全稳定运行的关键所在。对渠道防 渗技术进行综合评价与优化,不仅有助于提升防渗效 果,还能促进技术的持续进步与创新。

4.1 防渗效果评估

防渗效果评估是渠道防渗技术综合评价的核心内 容。通过全面、客观的评估,可以准确了解各种防渗技 术的实际效果,为技术优化与创新提供有力依据。在防 渗效果评估中,要关注的是防渗层的完整性。一个完整 的防渗层能够有效阻止水分渗漏,确保渠道内水流的 稳定。评估时需要检查防渗层是否存在裂缝、破损等问 题,以及这些问题对防渗效果的具体影响。要评估防渗 层的耐久性,耐久性强的防渗层能够长期保持稳定的防 渗效果,减少维修和更换的频率,从而降低工程成本。 评估时,可以通过模拟实际使用环境,对防渗层进行耐 久性测试, 以了解其使用寿命和性能变化情况。还需要 评估防渗技术对渠道水流的影响。防渗层的铺设可能会 改变渠道的水流特性,如流速、流态等。因此在评估时 需要关注这些变化是否会对渠道的安全稳定运行产生不 利影响。要综合考虑防渗技术的经济性,包括材料成 本、施工费用、维护成本等在内的经济因素,都是评估 防渗技术优劣的重要指标。在评估时,需要权衡各种因 素,选择性价比最高的防渗技术。

4.2 技术优化与创新

技术优化与创新是提升渠道防渗效果、推动技术持

续进步的重要途径。在优化与创新过程中,需要紧密结 合实际需求,不断探索新的防渗技术和方法。一方面, 可以通过改进现有防渗技术的材料和工艺,提升其防渗 效果。例如,针对土料防渗技术,可以研发更加高效、 环保的添加剂,以增强土料的防渗性能;针对水泥土防 渗技术,可以优化混合料的配比和施工工艺,提高防渗 层的强度和耐久性[5]。另一方面,可以积极引进和借鉴国 内外先进的防渗技术和经验,通过对比分析不同技术的 优缺点,结合实际情况进行消化吸收和创新,形成具有 自主知识产权的防渗技术体系。还可以利用现代科技手 段,如遥感监测、大数据分析等,对渠道防渗效果进行 实时监测和评估。通过收集和分析数据,及时发现并处 理潜在的安全隐患,提高渠道防渗的智能化和自动化水 平。在优化与创新过程中,还需要注重技术的可持续发 展。选择环保、节能、可再生的材料和工艺,减少对环 境的影响和资源的消耗,加强技术研发和人才培养,不 断提升技术水平和创新能力,为渠道防渗技术的持续进 步提供有力支撑。

结束语

在水利工程施工中,渠道防渗技术不仅关乎工程的 安全稳定,更直接关系到水资源的有效利用与可持续发 展。通过本文的探讨,深刻认识到渠道防渗技术的重要 性及其在提高水资源利用效率、保障工程安全方面的关 键作用。未来,随着科技的不断进步和创新,相信渠道 防渗技术将更加完善,为水利工程建设提供更加科学、 有效的解决方案。让我们携手共进,为推动水利事业的 繁荣发展贡献智慧和力量。

参考文献

[1]刘贤振.彩超诊断仪的常见故障解决探讨 [J]. 中国设备工程,2022(15):135-137.

[2]燕永胜.水利工程渠道防渗施工技术探讨[J]. 农业科技与信息,2020(13):74-75.

[3]刘春旸.李林娟.农田水利工程中渠道防渗施工技术运用分析[J]. 山西农经,2020(12):146-147.

[4]张冰.水利工程渠道防渗施工技术分析[J].清洗世界,2020,36(08):111-112.

[5]刘翔.渠道防渗技术在水利工程施工中的应用[J].长 江技术经济,2020,4(S1):59-60.