遥感技术在测绘规划中的应用

杜夭东 山西盛林工程设计有限公司 山西 大同 037000

摘 要: 遥感技术在测绘规划中的应用日益广泛,成为一项不可或缺的技术手段。遥感技术通过空中平台搭载传感器,对地面进行远距离感知和数据采集,具有覆盖范围广、信息量大、时效性强等特点。在测绘规划中,遥感技术可应用于地形图测绘、正射影像图制作、专题图制作等多个方面,提高测绘精度和效率。同时,遥感技术还能为城市规划、土地利用、地质灾害调查等提供科学依据,对保障测绘规划工作的质量和水平发挥了重要作用。

关键词: 遥感技术; 测绘规划; 应用

引言:随着科技的飞速发展,遥感技术作为一种先进的空间信息采集手段,在测绘规划领域展现出了巨大的应用潜力和价值。遥感技术通过捕捉地表物体的电磁波特性,实现对地理空间信息的快速、准确获取,为测绘规划提供了高效的数据支持。本文将深入探讨遥感技术在测绘规划中的具体应用,包括地形测绘、城市规划、环境监测等多个方面,旨在揭示遥感技术如何助力测绘规划工作的优化与创新,推动测绘领域的科技进步与发展。

1 遥感技术概述

1.1 遥感技术的发展历程

遥感技术的发展历程可以追溯到19世纪初期摄影技术的出现,这为遥感技术奠定了基础。随着1839年达盖尔摄影术的发明,人类首次成功地将拍摄事物记录在胶片上,标志着有记录地面遥感阶段的开始。随后,在19世纪中叶,气球被用于从空中对地面进行摄影,开启了遥感技术的早期探索。20世纪初,飞机的发明为遥感技术带来了重大突破,使得从空中对地表进行摄影成为可能。随着科技的进步,航天遥感技术逐渐兴起,遥感卫星的发射使得对地观测的范围更广、精度更高。

1.2 遥感技术的系统组成

遥感技术系统主要由遥感器、遥感平台、信息传输设备、接收装置及图像处理设备组成。遥感器是系统中的核心部件,用于接收远距离目标反射或发射的电磁波信号。遥感平台则负责搭载遥感器,可以是气球、飞机、卫星等。信息传输设备负责将遥感器收集到的数据传输到地面接收装置。接收装置则负责接收并存储这些数据。最后,图像处理设备对这些数据进行处理和分析,生成可视化的图像和信息^[1]。

1.3 遥感技术的基本原理

遥感技术的基本原理是利用电磁波理论,通过传感

仪器对远距离目标进行探测和识别。不同物体对电磁波的反射、吸收和发射特性不同,这些特性可以作为识别物体的依据。遥感器通过接收物体反射或发射的电磁波信号,将其转化为电信号,再经过处理和分析,得到物体的相关信息。这些信息可以用于判断物体的类型、位置、大小等属性。

1.4 遥感技术的应用范围

遥感技术的应用范围十分广泛。在环境监测方面,遥感技术可以用于监测大气质量、水质变化、森林火灾等环境问题。在城市规划领域,遥感技术可以提供高精度的城市地形图、土地利用图等信息,为城市规划提供科学依据。在农业管理方面,遥感技术可以用于监测农作物长势、病虫害情况、土壤湿度等,为农业生产提供精准指导。在自然资源调查方面,遥感技术可以用于探测矿产资源、森林资源、水资源等自然资源的分布和储量情况。

2 测绘规划的基本内容

2.1 测绘的定义与分类

测绘是测量与绘图的总称,是通过一定的技术手段和方法,对地球表面或某一特定区域的自然、经济、社会等要素进行测量、采集、处理、分析、表达和利用的过程。测绘活动涉及到地理空间信息的获取、管理和应用,是现代社会发展不可或缺的基础性、公益性事业。测绘根据目的和手段的不同,可以分为多种类型。从测量内容上看,测绘可以分为大地测量、工程测量、地形测量、地籍测量、海洋测绘等。大地测量关注地球形状、大小、重力场等参数,为地理坐标系统的建立和维护提供基础;工程测量则侧重于工程建设过程中需要的各种测量活动,如施工放样、竣工验收等;地形测量是对地表形状、地物地貌等进行的详细测量,其成果是地形图;地籍测量则是为了建立和管理土地权属信息;海

洋测绘则是对海域进行的各种测量活动。从技术手段上看,测绘可以分为传统测绘和现代测绘。传统测绘主要依赖地面测量、水准测量、三角测量等手工操作,而现代测绘则融合了遥感(RS)、地理信息系统(GIS)、全球定位系统(GPS)等现代信息技术,使得测绘工作更加高效、精准、便捷。

2.2 测绘规划的任务与目标

测绘规划的任务是根据经济社会发展的需要,制定测绘事业的发展方向、目标、重点任务和保障措施,以指导和推动测绘事业的发展。其目标主要有以下几个方面: (1)构建完善的基础测绘体系。建立健全覆盖全国的基础测绘网络,提高基础测绘的精度和时效性,为经济社会发展提供可靠的空间信息服务。(2)提升测绘科技创新能力。加强测绘科技的研发和应用,推动测绘技术的创新和发展,提高测绘服务的质量和效率。(3)加强测绘人才培养。培养一批高素质、高技能的测绘人才,为测绘事业的持续发展提供人才保障。(4)促进测绘成果的应用和共享。推动测绘成果在城市建设、资源管理、环境保护等领域的应用和共享,提高测绘成果的社会效益和经济效益[2]。

2.3 测绘规划在城市建设、资源管理及环境保护中的 应用

测绘规划在城市建设中发挥着至关重要的作用。通过测绘,可以精确测量城市的地形地貌、道路网络、建筑布局等信息,为城市规划、设计和建设提供科学依据。同时,测绘还可以用于城市基础设施的监测和维护,提高城市管理的效率和水平。在资源管理方面,测绘技术能够精确地获取资源的分布、储量和利用情况等信息,为资源规划、开发和管理提供决策支持。通过测绘,可以实现对资源的动态监测和管理,提高资源的利用效率和可持续性。在环境保护方面,测绘技术可以用于监测生态环境的变化、污染源的分布和排放情况等信息,为环境保护决策和执法提供依据。通过测绘,可以及时发现和处置环境问题,保护生态环境的安全和稳定。

3 遥感技术在测绘规划中的具体应用

3.1 地表覆盖分类与制图

(1)利用遥感技术获取地表覆盖类型的光谱信息。 地表覆盖分类是测绘规划中的基础性工作,对于理解地 表特征、制定科学合理的规划方案至关重要。遥感技术 通过卫星或无人机搭载的多光谱、高光谱传感器,能 够获取地表覆盖类型在不同波段下的光谱信息。这些信 息反映了地表物质的物理化学性质,如植被的叶绿素含 量、土壤的含水量、岩石的矿物成分等。(2)制作土 地利用图、植被覆盖图、水资源分布图等。基于获取的 光谱信息,遥感技术通过特定的算法和模型,能够实现 对地表覆盖类型的自动分类。通过分类后的数据,可以 制作出详细的土地利用图、植被覆盖图和水资源分布图 等专题地图。这些地图不仅展示了地表覆盖的空间分布 特征,还提供了丰富的属性信息,如土地利用类型、植 被种类、水质状况等^[3]。(3)为城市规划、农业发展、 自然资源管理提供基础数据。地表覆盖分类与制图成果 为城市规划、农业发展和自然资源管理提供了重要的基 础数据。城市规划者可以利用这些数据了解城市用地现 状,合理规划城市布局和发展方向;农业管理者可以根 据植被覆盖图评估农业生产潜力,指导作物种植和农田 管理;自然资源管理部门则可以利用这些数据监测自然 资源的变化趋势,制定科学的资源管理政策。

3.2 地形测量与地质调查

(1) 遥感技术提供高分辨率影像用于地形分析。地 形测量与地质调查是测绘规划中的另一项重要任务。遥感 技术通过高分辨率卫星影像或无人机影像, 能够清晰地展 示地表形态的微小变化,如地形起伏、地貌特征等。这些 影像数据为地形分析和地质调查提供了直观、准确的视觉 信息。(2)制作数字高程模型和地形图。基于高分辨率 影像,遥感技术还能生成数字高程模型(DEM)和地形 图。DEM通过数字形式表达了地表的高程信息,可以直 观地展示地形地貌的三维特征。而地形图则是根据DEM 数据生成的平面图形,展示了地表的高程、坡度、坡向 等关键地形要素。这些地形图不仅为地质调查提供了基 础数据,还为城市规划、交通设计等领域提供了重要参 考。(3)支持地质勘探、地震监测及灾害预警。遥感技 术在地质勘探、地震监测和灾害预警方面也发挥着重要 作用。通过分析遥感影像中的地质构造信息、地表形变 数据等,可以预测地下资源的分布和储量情况,指导地 质勘探工作。同时,遥感技术还能监测地震活动引起的 地表形变和地壳运动情况, 为地震预警和灾害评估提供 关键信息。此外, 在洪水、滑坡等自然灾害的监测和预 警中,遥感技术也发挥着不可替代的作用。

3.3 海岸线监测与河流变迁分析

(1)利用雷达遥感技术监测海岸线的动态变化。海岸线监测与河流变迁分析是海洋和河流资源管理的关键环节。雷达遥感技术凭借其穿透性强、全天候工作等特点,成为监测海岸线动态变化的重要手段。通过雷达卫星获取的影像数据,可以清晰地展示海岸线的位置、形态和变化趋势。(2)分析河流演变过程,监测洪水、决堤等自然灾害。除了海岸线监测外,遥感技术还能用于

河流演变过程的分析和自然灾害的监测。通过分析河流沿岸的地貌特征、水流速度和流向等信息,可以揭示河流的演变规律和趋势。同时,在洪水、决堤等自然灾害发生时,遥感技术能够迅速获取灾情信息,包括淹没范围、水深等关键数据,为抗灾救灾提供及时、准确的信息支持。(3)提供海岸防护工程和海洋资源管理的决策依据。遥感技术在海岸线监测和河流变迁分析中的应用成果,为海岸防护工程和海洋资源管理的决策提供了重要依据。通过掌握海岸线和河流的动态变化情况,可以科学地制定海岸防护工程的规划和建设方案,提高海岸线的防御能力和稳定性。同时,这些成果还为海洋资源的合理开发和利用提供了数据支持,有助于实现海洋资源的可持续利用。

3.4 城市规划与土地利用动态监测

(1)高精度影像获取和信息提取,实时监测城市建 设用地变化。城市规划与土地利用动态监测是测绘规划 中的重要内容之一。遥感技术通过高精度影像的获取和 信息提取技术,能够实时监测城市建设用地的变化情 况。通过对比不同时间点的遥感影像数据,可以清晰地 展示城市建设用地的扩张趋势和空间分布情况。(2) 分析工业园区建设、交通网络布局等城市扩张情况。基 于遥感技术获取的影像数据和信息提取结果,可以对工 业园区建设、交通网络布局等城市扩张情况进行深入分 析。通过评估城市扩张的速度、规模和方向等指标,可 以了解城市发展的动态趋势和空间布局特征。这些信息 对于制定科学合理的城市规划方案和引导城市可持续发 展具有重要意义。(3)为城市规划和土地资源管理提供 实时数据支持。遥感技术在城市规划与土地利用动态监 测中的应用成果, 为城市规划部门和土地资源管理部门 提供了实时、准确的数据支持。这些数据有助于城市规 划者更加科学地制定城市规划方案和政策措施;同时也 有助于土地资源管理者更加有效地实施土地资源管理和 利用规划工作[4]。

3.5 环境监测与生态保护

(1)遥感技术监测大范围环境变化,如植被覆盖变化、土壤退化等。环境监测与生态保护是测绘规划中的另一项重要任务。遥感技术通过捕捉地表反射或辐射的电磁波信息,能够实现对大范围环境变化的连续监测和

评估。通过监测植被覆盖度的变化、土壤含水量的变化 等指标,可以了解生态环境的健康状况和变化趋势;同 时也可以通过监测水质污染程度、空气质量等参数来评 估环境污染情况。(2)及时发现气候变化、水质污染、 森林砍伐等问题。除了监测大范围环境变化外, 遥感技 术还能及时发现气候变化、水质污染、森林砍伐等环境 问题。通过对比分析不同时间点的遥感影像数据和信息 提取结果,可以发现这些环境问题发生的具体位置、范 围和程度等信息;同时也可以通过分析地表温度、湿度 等参数来评估气候变化的影响程度和趋势。这些信息对 于制定针对性的环境保护政策和措施具有重要意义。 (3)支持环境保护和生态修复措施的制定与实施。遥感 技术在环境监测与生态保护中的应用成果, 为环境保护 部门和生态修复工作提供了科学依据和数据支持。通过 掌握生态环境的变化情况和趋势, 可以制定科学合理的 环境保护政策和措施;同时也可以通过评估生态修复工

结束语

综上所述,遥感技术在测绘规划领域的应用不仅极 大地提高了工作效率与数据准确性,而且拓展了测绘规 划的应用边界。通过遥感技术,我们能够实现地表信息 的快速采集、实时监测与精准分析,为城市规划、资源 调查、环境保护等多方面提供了强有力的支持。未来, 随着遥感技术的不断进步,其在测绘规划领域的应用将 更加广泛,为社会发展注入更多科技力量。我们期待遥 感技术继续发挥其在测绘规划中的重要作用,助力构建 更加智慧、绿色的未来。

作的效果来指导后续工作。这些工作有助于保护生态环

境的安全和稳定,促进人与自然的和谐共生。

参考文献

[1]李增文.卫星遥感技术在城市规划管理中的应用关键思路分析[J].2021,(02):15-16.

[2]冯晓平.测绘工程测量中无人机遥感技术的应用[J]. 河南水利与南水北调,2020,(08):71-72.

[3]徐瀛杰,孙秀丽.浅析无人机遥感技术在测绘工程测量中的应用[J].冶金与材料,2021,(09):86-87.

[4]厉争艳.无人机遥感技术在测绘工程中的应用研究 [J].西部资源,2023,(14):139-140.