创新燃料管理及降低燃料成本的探讨

苏清流 程青萍 王 璁 刘禹形 华能营口热电有限责任公司 辽宁 营口 115003

摘 要:本文探讨企业燃料管理,深入剖析采购、存储、使用环节现存问题,如价格波动应对不足、存储设施老化、设备效率低下等。进而提出创新燃料管理策略,包括建立价格预测模型、升级存储设施、设备升级改造等,以及降低燃料成本的具体措施,如优化运输环节、开展燃料质量优化、实施能源管理体系建设。以顺丰速运为例,经实施创新举措,其燃料采购成本降低15%,存储损耗下降30%,车辆燃油消耗减少10%,综合燃料成本降低超20%,彰显创新燃料管理对企业降本增效的显著作用。

关键词:燃料管理现状;创新燃料管理;降低燃料成本;案例分析

引言

当前企业运营中,燃料成本构成了重要的财务支出,并受到多种复杂市场因素的剧烈影响,呈现出高度波动性。传统的燃料管理模式暴露出诸多弊端,难以有效应对燃料价格的剧烈波动、存储过程中的损耗以及使用过程中的浪费等问题,从而严重制约了企业经济效益的提升和市场竞争力的增强。因此,探索并实施创新的燃料管理模式,以降低燃料成本,已成为当前企业亟待解决的核心课题。

1 燃料管理现状分析

1.1 采购环节问题

(1)价格波动应对不足。当前燃料市场价格受国际 政治、经济形势以及地缘关系等多种因素影响,波动剧 烈。许多企业在燃料采购过程中,缺乏对价格走势的精 准预判能力,往往采用较为固定的采购模式,在价格高 位时被动采购,导致采购成本大幅增加。(2)供应商 单一风险。部分企业为简化采购流程,长期依赖单一供 应商供应燃料。这种模式虽在一定程度上降低了沟通成 本,但也使企业面临供应中断风险。一旦供应商出现生 产问题、运输受阻等情况,企业可能无法及时获得足够 的燃料供应,影响正常生产运营。同时,单一供应商缺 乏竞争压力,企业在价格谈判方面处于劣势,难以争取 到更优惠的采购价格和条款。(3)采购流程繁琐。繁琐 的采购流程降低了采购效率,增加了时间成本。从需求 预测、采购计划制定、招标、合同签订到最终交付,涉 及多个部门和环节、信息传递不畅、审批周期长等问题 时有发生,可能导致错过最佳采购时机。

1.2 存储环节问题

(1)存储设施老化。一些企业的燃料存储设施建设 年代久远,缺乏定期维护和更新,存在设备老化、密封 性能差等问题。这不仅增加了燃料的挥发损耗,还可能导致燃料质量下降,影响使用效果。例如,油罐的腐蚀可能导致油品污染,降低燃烧效率。(2)库存管理不合理。库存管理缺乏科学的预测和规划方法,部分企业要么库存过高,占用大量资金和仓储空间,增加存储成本;要么库存过低,面临供应短缺风险,影响生产连续性。缺乏对不同季节、不同生产需求下燃料消耗规律的深入分析,难以制定精准的库存策略。

1.3 使用环节问题

(1)设备效率低下。许多企业使用的燃料设备,如 发动机、锅炉等,技术陈旧,能源转换效率低。老旧设 备在运行过程中需要消耗更多的燃料来完成相同的工作 任务,导致燃料浪费严重。(2)操作不规范。操作人员 对燃料设备的操作不熟练、不规范,未按照最佳操作规 程进行操作,也会导致燃料消耗增加。例如,在发动机 启动和运行过程中,不合理的油门控制、频繁的启停操 作等,都会使燃料燃烧不充分,降低能源利用效率。

2 创新燃料管理策略

2.1 采购环节创新

(1)建立价格预测模型。企业应投入资源,组建专业的市场分析团队或借助外部专业咨询机构的力量,运用大数据分析、人工智能算法等技术手段,建立燃料价格预测模型。该模型综合考虑国际原油价格走势、政治局势、经济增长数据、季节性需求变化等多种因素,对燃料价格进行实时监测和动态预测^[1]。通过准确把握价格趋势,企业能够在价格低谷期增加采购量,在价格上涨预期强烈时提前储备,有效降低采购成本。(2)多元化供应商管理。积极拓展供应商资源,与多个优质供应商建立长期稳定的合作关系。定期对供应商进行评估和考核,从供应能力、产品质量、价格水平、交货及时性、

售后服务等多个维度进行打分,淘汰不合格供应商,激励优质供应商持续提升服务水平。通过引入竞争机制,企业在采购谈判中拥有更多话语权,能够争取到更有利的采购价格、付款条件和其他优惠条款。同时,多元化的供应商结构可有效降低供应中断风险,确保企业燃料供应的稳定性。(3)优化采购流程。利用信息化技术构建一体化的采购管理平台,实现采购流程的数字化和自动化。从需求提报、采购计划生成、供应商选择、招标采购到合同签订、订单跟踪、验收结算等各个环节,都在平台上进行高效流转和协同作业。通过流程优化和系统集成,减少人工干预,提高信息传递的准确性和及时性,缩短采购周期,降低采购成本。同时,采购管理平台可实时记录和分析采购数据,为企业制定采购策略提供数据支持。

2.2 存储环节创新

(1)升级存储设施。加大对燃料存储设施的更新改造投入,采用新型的存储设备和技术,提高存储设施的密封性能、防腐性能和自动化管理水平。例如,使用双层油罐、新型密封材料和智能化的液位监测系统,可有效减少燃料的挥发损耗和泄漏风险,同时实现对库存的实时监控和精准管理。对存储设施进行定期维护和保养,建立设备维护档案,及时发现和解决设备故障隐患,确保存储设施的安全稳定运行。(2)引入智能库存管理系统。借助物联网、大数据等技术,引入智能库存管理系统。该系统通过实时采集燃料的库存数量、消耗速率、采购周期等数据,运用数学模型和算法对库存进行动态预测和优化管理。根据设定的安全库存阈值和补货策略,系统自动生成采购订单,实现库存的自动补货。通过智能库存管理系统,企业能够实现精准库存控制,降低库存成本,同时确保燃料供应的及时性和稳定性。

2.3 使用环节创新

(1)设备升级与改造。对燃料使用设备进行技术升级和改造,采用高效节能的新型设备或对现有设备进行节能改造。例如,在发电领域,采用超超临界机组、高效燃气轮机等新型发电设备,可显著提高能源转换效率,降低燃料消耗。对工业锅炉进行节能改造,采用先进的燃烧技术、余热回收装置等,提高锅炉热效率。企业应制定设备更新改造计划,逐步淘汰老旧低效设备,提升设备整体性能和能源利用效率。(2)强化操作培训与管理。加强对操作人员的专业培训,提高其对燃料设备的操作技能和节能意识。定期组织操作人员参加技术培训和技能考核,使其熟悉设备的性能特点、操作规程和节能技巧。制定详细的设备操作规范和考核制度,将操作人员

的操作绩效与个人薪酬挂钩,激励操作人员严格按照规 范操作设备,避免因操作不当导致的燃料浪费^[2]。同时, 鼓励操作人员提出设备操作和节能方面的合理化建议,对 有效建议给予奖励,形成全员参与节能降耗的良好氛围。

3 降低燃料成本的具体措施

3.1 优化运输环节

(1) 合理规划运输路线。利用地理信息系统(GIS) 和运输管理软件,对燃料运输路线进行优化设计。综合 考虑交通状况、运输距离、道路收费等因素,选择最优 的运输路线,减少运输里程和时间,降低运输成本。实 时监控运输车辆的行驶轨迹和状态,根据实际路况及时 调整路线,避免车辆拥堵和绕路。(2)选择合适的运 输方式。根据燃料的种类、运输量、运输距离等因素, 选择经济合理的运输方式。对于长距离、大批量的燃料 运输,优先考虑铁路运输或管道运输,其运输成本相对 较低且运输量大、稳定性高。对于短距离、小批量的运 输,可选择公路运输,具有灵活性强、配送及时的优 势。通过合理组合运输方式,实现运输成本的最小化。 (3)加强运输车辆管理。对运输车辆进行定期维护和保 养,确保车辆性能良好,减少因车辆故障导致的运输延 误和成本增加。安装车辆油耗监测设备,实时监控车辆 油耗情况,对油耗过高的车辆进行排查和整改。合理安 排车辆调度,提高车辆满载率,避免车辆空载行驶,降 低单位运输成本。

3.2 开展燃料质量优化

(1)建立质量检测体系。企业应建立完善的燃料质 量检测体系, 配备专业的检测设备和人员, 对采购的燃 料进行严格的质量检测。在燃料入库前、使用过程中定 期进行质量抽检,确保燃料质量符合企业的使用要求。 检测项目包括燃料的热值、含硫量、含水量、杂质含量 等关键指标。通过质量检测,及时发现和处理质量不合 格的燃料,避免因燃料质量问题导致的设备损坏和能源 浪费。(2)与供应商协同提升质量。加强与供应商的 沟通与合作,共同制定燃料质量标准和提升计划。要求 供应商优化生产工艺,提高燃料质量稳定性。对于优质 供应商,可给予一定的奖励和长期合作承诺,激励供应 商持续提升产品质量。同时,企业可参与供应商的质量 控制过程,对供应商的生产环节进行监督和指导,确保 供应的燃料质量符合企业的严格要求[3]。(3)探索燃料 掺混技术。在保证设备安全运行和生产工艺要求的前提 下,探索燃料掺混技术,将不同种类、不同质量的燃料 按照一定比例进行混合使用。通过合理掺混,可在不影 响设备性能的基础上,降低燃料采购成本。例如,在一

些工业窑炉中,将价格较低的生物质燃料与煤炭进行掺 混燃烧,既能降低燃料成本,又能减少污染物排放。但 在实施燃料掺混技术时,需进行充分的试验和论证,确 保掺混比例的合理性和设备的适应性。

3.3 实施能源管理体系建设

(1)建立能源管理体系标准。依据国际能源管理体 系标准(如ISO 50001),结合企业实际情况,建立完善 的能源管理体系。明确能源管理职责,制定能源目标、 指标和管理方案,规范能源采购、存储、使用等各个环 节的操作流程和管理要求。通过建立能源管理体系,实 现对企业能源消耗的全面监控、分析和持续改进。(2) 开展能源审计与监测。定期组织能源审计工作,对企业 的能源使用情况进行全面审查和评估。通过能源审计, 找出能源消耗的重点环节和存在的问题, 提出针对性的 改进措施。安装能源监测系统,对燃料消耗、设备运行 状态等能源数据进行实时采集和分析。利用数据分析结 果,及时发现能源浪费现象和设备运行异常情况,采取 相应的措施进行调整和优化。(3)推行节能奖励机制。 建立健全节能奖励制度,对在降低燃料消耗、提高能源 利用效率方面做出突出贡献的部门和个人给予物质奖励 和精神表彰。将节能指标纳入绩效考核体系,与员工的薪 酬、晋升挂钩,激励全体员工积极参与节能降耗工作。设 立节能专项奖励基金,用于支持节能技术研发、设备改造 和节能项目实施,推动企业节能工作深入开展。

4 案例分析

4.1 企业背景介绍

顺丰速运作为大型物流行业的领军企业,拥有规模 庞大的运输车队,其业务核心在于货物的长途高效运 输。在企业运营成本架构中,燃料成本占据了超40%的高 比例。随着快递物流市场竞争日益白热化,以及燃料价格 频繁波动,顺丰速运面临着严峻的成本管控挑战。为突破 这一困境,企业积极投身于创新燃料管理模式的探索。

4.2 采取的创新措施

顺丰组建了专业的市场分析智囊团,运用大数据分析技术搭建燃料价格预测模型。凭借对市场价格走势的精准洞察,在燃料价格处于低谷阶段时提前储备,有效压低采购成本。同时,大力拓展供应商资源,与诸多优

质供应商建立长期合作。通过招标采购与谈判博弈,成功获取更优惠的采购价格与付款条件。此外,借助信息 化采购管理平台,实现采购流程自动化与高效化,大幅 缩短采购周期。

对油罐等存储设施进行全面升级,采用新型密封材料并配备智能化液位监测系统,显著减少燃料挥发损耗^[4]。引入智能库存管理系统,依据车辆实际运行数据和历史燃料消耗记录,精准预估燃料需求,达成库存自动补货与精准控制,降低库存成本。

对运输车辆开展节能改造,安装节能装置以提升车辆燃油经济性。强化对驾驶员的专业培训,制定详尽的驾驶操作规范,将驾驶员油耗表现与绩效紧密挂钩,激励驾驶员采用节能驾驶方式,杜绝不必要的燃料浪费。

4.3 实施效果

通过一系列创新举措的有力实施,顺丰速运在燃料管理领域成绩斐然。燃料采购成本降低15%,存储损耗下降30%,车辆燃油消耗减少10%,综合燃料成本降低幅度超20%。这一系列成果不仅大幅提升了企业经济效益,还进一步巩固了其在市场中的竞争优势。

结束语

综上所述,创新燃料管理模式对企业降低成本、提 升竞争力至关重要。通过精准剖析各环节问题,实施针 对性创新策略与降本措施,企业能有效应对燃料管理挑 战。顺丰速运的成功实践表明,积极变革能带来显著成 效。未来,企业应紧跟行业动态,持续优化燃料管理, 以在激烈的市场竞争中占据优势,实现可持续发展。只 有不断创新,企业才能在成本控制与竞争力提升上取得 双赢。

参考文献

[1]柯茗籍.火电厂的燃料管理及成本控制措施研究[J]. 现代经济信息,2023,38(29):28-30.

[2]汪芮.燃料电池外购件成本管理探讨[J].上海汽车,2021(9):27-29.

[3]刘纪国.生物质发电厂燃料管理与成本控制研究[J]. 中国集体经济,2021(16):55-56.

[4]李贵贤.探讨火力发电企业燃料成本管理[J].价值工程,2020,39(7):86-87.