现代工程测量技术在水利工程中的应用分析

张献慧 泸州职业技术学院 四川 泸州 646000

摘 要:现代工程测量技术在水利工程中发挥着关键作用,包括GPS、GIS、遥感技术、全站仪及三维激光扫描等。这些技术提高了测量精度和工作效率,实现了实时监测与动态分析,降低了劳动强度与安全风险。未来,多技术融合与智能化、高精度测量、云平台与移动测量技术、绿色环保测量将成为发展趋势,推动水利工程向更加精细化、智能化、绿色化方向发展,为水利事业的可持续发展提供有力支持。

关键词:现代工程;测量技术;水利工程;应用优势

引言

水利工程作为国民经济的重要基础设施,其建设与管理水平直接关系到国家经济发展和民生福祉。随着科技的进步,现代工程测量技术不断涌现,为水利工程带来了革命性的变化。这些技术不仅提高了测量的精度和效率,还实现了实时监测与动态分析,为水利工程的安全运行和科学管理提供了有力保障。本文旨在探讨现代工程测量技术在水利工程中的应用及其发展趋势。

1 现代工程测量技术概述

1.1 全球定位系统(GPS)

GPS是一种基于卫星导航的定位系统,通过接收多颗卫星发射的信号,利用空间距离交会原理确定测量点的三维坐标。其具有定位速度快、精度高、不受通视条件限制等优点,广泛应用于水利工程的平面和高程控制测量、地形测绘、变形监测等方面^[1]。在水利工程建设的广阔区域内,GPS能够快速获取大量测量点的精确坐标,大大提高了测量工作效率。

1.2 地理信息系统(GIS)

GIS是一种对地理空间数据进行采集、存储、管理、分析和可视化表达的计算机系统。它能够将水利工程相关的地形地貌、水文地质、水资源分布等多种信息进行整合,通过空间分析功能为水利工程规划设计、运行管理提供决策支持。利用GIS可以对流域内的水系进行模拟分析,优化水利工程的布局,评估工程对周边环境的影响。

1.3 遥感 (RS) 技术

RS技术是通过搭载在卫星、飞机等平台上的传感器,远距离获取目标物体的电磁波信息,从而识别物体的性质和状态。在水利工程中,RS技术可用于大面积的地形测绘、水资源监测、水土流失监测以及水利工程设施的巡检等。通过对不同时期遥感影像的对比分析,能

够及时发现水利工程周边环境的变化,为工程管理提供依据。

1.4 全站仪测量技术

全站仪是一种集测角、测距、测高差功能于一体的测量仪器,能够自动计算并显示测量点的三维坐标。它具有测量精度高、操作简便等特点,在水利工程的局部地形测量、建筑物施工放样、变形监测等方面发挥着重要作用。特别是在复杂地形和近距离测量场景中,全站仪能够灵活地进行测量作业,满足工程的高精度要求。

1.5 三维激光扫描技术

三维激光扫描技术利用激光测距原理,快速获取物体表面的三维坐标信息,生成密集的点云数据。通过对这些点云数据的处理和分析,可以构建出物体的三维模型。在水利工程中,三维激光扫描技术可用于对大坝、堤防等建筑物的表面形态进行快速测绘,检测建筑物的变形、裂缝等病害,为工程的安全评估和维护提供详细的数据支持。

2 现代工程测量技术在水利工程中的应用优势

2.1 提高测量精度

现代工程测量技术在水利工程中的应用,首要且显著的优势在于其能够大幅度提高测量精度。这一提升主要得益于先进的传感器技术和精密的测量算法。首先,GPS技术的应用为水利工程测量带来了革命性的变化。传统的测量方式往往受到地形、天气等多种因素的影响,而GPS技术凭借其全球覆盖、全天候作业的特点,能够稳定地提供高精度的定位信息。在水利工程中,GPS测量精度可达毫米级,这对于确保工程建设的准确性至关重要。其次,全站仪作为另一种常用的工程测量仪器,其测角精度可达秒级,测距精度也极高。这使得全站仪在水利工程中的地形测量、施工放样等环节能够发挥出极大的作用,确保测量结果的准确性[2]。三维激光扫描技术

更是以其独特的优势,在水利工程测量中崭露头角。该 技术能够获取物体表面高密度的点云数据,通过数据处 理和建模,可以精确还原物体的三维形态。这一技术不 仅提高了测量的精度,还极大地丰富了测量数据的表现 形式,为水利工程的设计、施工和安全监测提供了更加 全面、直观的信息支持

2.2 提升工作效率

现代工程测量技术在水利工程中的应用,不仅显著 提高了测量精度,还极大地提升了工作效率。相较于传 统的水利工程测量方法,现代技术实现了自动化、智能 化作业,极大地减轻了人工操作的负担。(1)传统的水 利工程测量往往需要大量的人力投入,从实地测量到数 据记录、计算,再到成果图的绘制,整个过程繁琐且耗 时。而现代工程测量技术的应用,则彻底改变了这一状 况。RS(遥感)技术的引入,使得我们可以快速获取大 面积的地形和水资源信息,无需再进行大量的实地测量 工作,从而大大节省了时间和人力成本。(2)GPS和全 站仪等测量仪器的自动化测量功能,也极大地提高了工 作效率。这些仪器能够自动获取测量点的坐标信息,减 少了人工计算和记录的时间, 使得测量工作更加高效、 准确。此外,这些仪器还具备数据存储和传输功能,可 以实时将测量数据上传至云端或数据中心, 方便后续的 数据处理和分析。(3)三维激光扫描技术在水利工程测 量中的应用, 更是将工作效率提升到了一个新的高度。 该技术能够在短时间内完成对建筑物表面的快速测绘, 生成详细的三维模型。这一技术的应用,不仅提高了测 量的精度和全面性,还极大地缩短了测量周期,为工程 设计和施工提供了更加及时、准确的数据支持。

2.3 实现实时监测与动态分析

在现代水利工程管理中,实时监测与动态分析已成为不可或缺的一环。这一目标的实现,得益于现代工程测量技术、通信技术和计算机技术的完美结合。第一,通过在水利工程的关键部位安装传感器,我们能够实时捕捉到工程设施的运行状态。这些传感器能够敏锐地感知到设施的微小变化。利用GPS(全球定位系统)和RS(遥感技术),我们可以对工程周边环境进行实时监测,获取地形、水文、气象等多方面的数据。第二,采集到的数据通过无线通信技术被迅速传输至管理中心。在这里,GIS(地理信息系统)等软件发挥着至关重要的作用。它们能够对接收到的数据进行快速处理和分析,帮助我们及时了解工程设施的运行状态和周边环境的变化情况。第三,当GIS等软件发现数据异常时,系统会立即触发预警机制,向管理人员发出警报。这种预警机制

不仅提高了工程管理的效率,更为工程的应急处置提供了宝贵的决策支持。管理人员可以根据预警信息,迅速判断问题的性质和严重程度,并采取相应的措施,从而确保工程的安全运行。

2.4 降低劳动强度与安全风险

水利工程测量往往需要在复杂多变、甚至危险的环 境中作业,如崎岖的山区、宽阔的水域等。这些特殊的 工作环境不仅增加了测量的难度, 也给测量人员带来了 较大的劳动强度和潜在的安全风险。然而,随着现代工 程测量技术的不断进步,这些问题正在得到有效解决。 (1) 无人机技术的引入, 为水利工程测量带来了革命性 的变化。无人机可以灵活地在复杂地形上空飞行,进行 高精度的巡检和地形测绘。这不仅避免了测量人员进入 危险区域作业的风险, 还大大提高了测量的效率和准确 性。无人机还可以搭载各种传感器,实时采集地形、水 文等数据, 为水利工程的设计、施工和管理提供全面、 准确的信息支持。(2)远程监测技术也在水利工程测量 中发挥着越来越重要的作用。通过安装传感器和监测设 备,工作人员可以在安全的室内环境中对工程设施进行 实时监测和管理。这种非接触式的测量方式,不仅降低 了劳动强度,还大大提高了工作的安全性。远程监测技 术还可以实现对工程设施的连续、动态监测,及时发现 和处理潜在的安全隐患。

3 现代工程测量技术在水利工程中的发展趋势

3.1 多技术融合与智能化发展

现代工程测量技术正步入一个全新的发展阶段,其核心特征为多技术深度融合与智能化。这一趋势旨在通过技术整合,构建高效、智能的水利工程监测与管理系统。在这一系统中,GPS、RS、GIS及物联网技术将协同工作。GPS技术提供精准定位,确保监测数据的空间准确性;RS技术则负责大面积数据采集,快速获取工程周边环境的全面信息;GIS技术则承担起数据管理和分析的重任,挖掘数据间的关联与规律;物联网技术则确保设备间的互联互通,实现数据的实时传输与共享^[3]。在此基础上,人工智能与大数据技术将发挥关键作用。它们将对海量数据进行深度挖掘与分析,揭示数据背后的隐藏信息,为水利工程的智能监测、故障诊断及决策支持提供科学依据。这种智能化的数据处理方式,将极大提升工程管理的效率与准确性,推动水利工程向更加精细化、智能化的方向发展。

3.2 高精度与高分辨率测量技术的应用

新一代GPS技术正逐步成为水利工程变形监测的首选。相较于传统GPS,新一代技术在定位精度上有了显著

提升,能够满足水利工程对微小变形的精确捕捉需求。这种高精度的定位能力,为工程的安全监测和稳定性评估提供了可靠的数据支持。(1)高分辨率遥感卫星的普及,也为水利工程的设计和管理带来了革命性变化。卫星能够捕捉到更详细的地形和地物信息,包括微小的地貌特征、植被分布等。这些信息为工程的精细化设计提供了科学依据,有助于工程师在规划阶段就充分考虑环境因素,确保工程的合理性和可持续性。(2)三维激光扫描技术也在水利工程领域展现出巨大潜力。该技术通过高速、高精度的扫描,能够迅速获取水利工程设施的三维模型。这一模型为设施的测绘提供了精确依据,还能够在病害检测中发挥重要作用。工程师可以依据扫描结果,及时发现设施的潜在问题,并采取相应的修复措施,确保工程的安全运行。

3.3 云平台与移动测量技术的普及

(1)云平台技术的崛起,为水利工程测量数据的存储、管理和共享带来了前所未有的便利。借助这一技术,测量人员不再受地域限制,可以随时随地通过云端访问和处理测量数据,极大地提升了工作效率,云平台还促进了多部门、多人员之间的协同工作,使得数据的共享与利用更加高效^[4]。(2)与此移动测量技术也在水利工程测量领域大放异彩。智能手机、平板电脑等移动设备,凭借其便携性和普及性,成为现场测量的新宠。这些设备搭载的测量软件和传感器,使得现场快速测量和数据采集成为可能,进一步提高了测量的灵活性和准确性。(3)移动测量技术与云平台技术的结合,更是为水利工程测量带来了质的飞跃。两者相辅相成,提升了测量的便捷性,还促进了数据的实时共享与分析,为水利工程的精准决策提供了有力支持。

3.4 绿色环保测量技术的研发

在水利工程测量领域,绿色环保已成为不可忽视的 发展趋势。为了实现这一目标,研发和应用低能耗、无 污染的测量技术和设备显得尤为重要。未来的水利工程 测量将更多地依赖于清洁能源,如太阳能、风能等。这 些清洁能源不仅能够为测量设备提供稳定的电力支持, 还能显著减少对传统能源的依赖,降低能源消耗和碳排 放。环保型的测量材料和工艺也将得到广泛应用。这些 材料和工艺在制造和使用过程中,能够最大限度地减少 污染物的排放,降低对环境的负面影响。通过采用这些 环保措施,水利工程测量将更加符合可持续发展的理 念。绿色环保测量技术的应用,大幅提升了水利工程测 量的效率和准确性,更实现了工程建设与生态保护的和 谐共生。这种技术革新,为水利事业的可持续发展开辟 了新路径,注入了蓬勃活力,确保水资源开发的同时, 有效保护了自然环境,促进了人与自然和谐共存的理想 状态。

结语

现代工程测量技术在水利工程中成效显著,已成为规划、设计、施工和管理不可或缺的工具。高精度测量、实时监测与动态分析等技术特点,确保了水利工程的科学性和安全性。展望未来,技术的持续进步将推动工程测量向智能化、精细化迈进,同时注重绿色化发展,降低能耗与污染。这些变革将为水利事业注入持久动力,促进水资源的可持续利用,为国家的经济发展和社会福祉贡献力量。

参考文献

[1]张帅.现代工程测量技术在水利工程中的应用分析 [J].水上安全,2025(1):109-111.

[2]刘世坤,崔志伟,武祥云.测绘技术在现代工程测量中的应用研究[J].科学与信息化,2025(3):25-27.

[3]虞道祥.现代工程测量技术在水利工程中的应用探析[J].水利科学与寒区工程,2021,4(4):129-131.

[4]曹洪玲,周敏.现代工程测量技术在水利工程建设中的应用[J].城镇建设,2023(24):168-170.