无机锚固卷在老闸加固后锚固植筋中的应用探讨

司 帅 马时春 颜泽群 黄 瑶 江苏省鸿源招标代理股份有限公司 江苏 南京 223800

摘 要:本文探讨了无机锚固卷在老闸加固后锚固植筋中的应用。老闸因长期运行出现结构老化、承载力下降等问题,采用无机锚固卷植筋技术进行加固成为一种有效手段。通过分析无机锚固卷的特性与优势,结合老闸加固工程实例,阐述了其施工工艺、质量控制要点及加固效果。研究表明,无机锚固卷植筋技术不仅施工便捷、锚固效果好,还能显著提升老闸的承载能力与耐久性,为老闸加固提供了新的解决方案,具有广泛的应用前景。

关键词: 无机锚固卷; 老闸加固; 锚固植筋; 应用

1 无机锚固卷概述

1.1 无机锚固卷的组成

无机锚固卷是一种以无机材料为主要成分的锚固产品,通常由无机胶凝材料(如水泥、石膏等)、骨料(如石英砂、矿渣等)、外加剂(如早强剂、减水剂等)以及增强纤维(如玻璃纤维、聚丙烯纤维等)等组成。这些材料通过特定的配比和工艺加工而成,形成具有一定强度和韧性的卷状或片状锚固材料。无机锚固卷不含有机溶剂,具有环保、耐火、耐久性强等特点。

1.2 无机锚固卷的工作原理

无机锚固卷的工作原理基于其无机胶凝材料的硬化特性。当无机锚固卷被安装到需要锚固的部位后,通过与水或其他激活剂接触,无机胶凝材料开始发生水化反应,逐渐硬化并形成具有一定强度的锚固体^[1]。这个过程中,骨料提供了锚固体的基本骨架,增强纤维则提高了锚固体的韧性和抗裂性能。随着水化反应的进行,无机锚固卷与基材之间形成牢固的化学键合和机械咬合,从而实现锚固效果。

1.3 无机锚固卷的适用范围

无机锚固卷因其优异的性能而广泛应用于多个领域。在建筑工程中,它可用于墙体、楼板、梁柱等结构构件的锚固加固;在桥梁工程中,可用于桥墩、桥台、支座等部位的锚固连接;在隧道工程中,可用于衬砌、支护等结构的锚固固定。此外,无机锚固卷还适用于矿山、水利、电力等行业的锚固需求,如锚杆支护、锚索固定等。其适用范围广泛,能够满足不同工程对锚固性能和耐久性的要求。

2 老闸加固后锚固植筋设计要点

2.1 老闸结构检测与评估

老闸加固工程的首要步骤是对现有结构进行全面检 测与评估。这一环节至关重要,因为准确的结构现状分 析是后续加固设计的基础。检测内容应涵盖混凝土强度、钢筋锈蚀情况、裂缝分布与宽度、结构变形以及基础沉降等多个方面。通过非破坏性检测技术(如超声波检测、雷达扫描等)和必要的取芯试验,可以获取结构内部材料性能的详细数据。评估时,需结合设计规范与实际检测结果,判断老闸结构的安全性与耐久性,明确需要加固的具体部位和程度。这一过程不仅为植筋设计提供依据,还确保加固方案的经济合理性与技术可行性。

2.2 植筋位置与数量确定

基于结构检测与评估结果,合理确定植筋位置与数量是加固效果的关键。植筋位置应优先选择在结构受力较大或存在明显损伤的区域,如梁柱节点、裂缝交叉点等,以有效增强结构的整体性与承载能力。数量的确定需综合考虑结构受力需求、植筋间距限制以及施工可行性。一方面,需确保植筋数量足够以承担预期荷载,避免结构因局部应力集中而发生破坏;另一方面,也要避免植筋过于密集导致混凝土保护层厚度不足,影响结构耐久性。设计时,可借助有限元分析等数值模拟手段,对不同植筋方案进行对比分析,选择最优方案。

2.3 钢筋与无机锚固券选型

钢筋与无机锚固卷的选型直接关系到植筋效果与结构安全。钢筋的选型需根据结构受力特点、环境条件及耐久性要求综合确定。对于老闸加固工程,通常推荐采用高强度、耐腐蚀性能好的钢筋,如HRB400E级或以上级别的热轧带肋钢筋。无机锚固卷的选择则需考虑其与混凝土基材的粘结性能、耐久性、施工便捷性等因素。优质的无机锚固卷应具备良好的早期强度发展能力、长期稳定性以及与钢筋和混凝土的兼容性,还需注意锚固卷的规格尺寸应与所选钢筋直径相匹配,确保锚固效果^[2]。

2.4 植筋深度设计

植筋深度是影响锚固效果的核心参数之一。合理的

植筋深度应能确保钢筋与混凝土之间形成足够的粘结力,以传递结构荷载。设计时,需综合考虑钢筋直径、混凝土强度、锚固卷性能以及结构受力特点等因素。一般而言,植筋深度应不小于钢筋直径的10倍(对于重要结构或特殊环境条件,此值可能需适当增加),且需满足最小锚固长度要求,以确保在各种荷载作用下钢筋不会发生拔出破坏。同时,还需注意植筋孔的直径应略大于钢筋直径,以便于施工操作并保证锚固卷充分填充孔洞,形成良好的粘结界面。植筋孔的清理与处理也是确保锚固效果的重要环节,需采取有效措施清除孔内杂物,保证孔壁干净、粗糙,以提高锚固卷与混凝土的粘结性能。

3 无机锚固卷在老闸加固植筋中的施工工艺

3.1 施工前准备

在老闸加固植筋工程中,施工前的准备工作是确保 后续施工顺利进行和工程质量达标的基础。首先,需对 老闸结构进行全面细致的现场勘查,了解结构现状、 损伤情况以及周边环境, 为后续设计提供依据。组织设 计、施工、监理等各方进行技术交底,明确施工要求、 技术标准和安全规范。材料准备方面,需根据设计要 求,提前采购符合质量标准的无机锚固卷、钢筋、钻孔 设备、清孔工具、注浆设备等材料和机具,并进行质量 检验,确保材料性能满足施工需求。特别是无机锚固 卷,应检查其包装是否完好,生产日期、保质期等信息 是否清晰,必要时进行抽样检测,验证其粘结强度、耐 久性等关键性能指标。人员培训与组织也是施工前准备 的重要环节,应对施工人员进行专业技能培训,使其熟 悉无机锚固卷植筋施工工艺流程、操作要点及安全注意 事项,确保施工过程中能够严格按照规范操作。同时合 理组织施工队伍, 明确各岗位职责, 建立有效的沟通协 调机制,确保施工过程中的信息传递顺畅,问题能够得 到及时解决。

3.2 钻孔作业

钻孔作业是无机锚固卷植筋施工的关键步骤之一, 其质量直接影响锚固效果。首先,根据设计图纸,使用 测量仪器精确确定钻孔位置,并做好标记。钻孔前,需 对钻机进行调试,确保其性能稳定,钻头直径与钢筋直 径相匹配,同时检查钻机的冷却系统,防止钻孔过程中 因过热而损坏钻头。钻孔时,应控制钻孔速度,避免过 快导致孔壁粗糙或孔径扩大,影响锚固效果。钻孔深度 需严格按照设计要求执行,使用深度尺等工具进行实时 监测,确保达到预定深度。钻孔过程中,如遇到钢筋等 障碍物,应立即停止钻孔,调整钻孔位置或采取其他措 施,避免损坏钻头或影响结构安全。钻孔完成后,需进行 清孔作业。使用压缩空气或专用清孔工具,将孔内灰尘、 碎屑等杂物彻底清除,确保孔壁干净、粗糙,有利于无机 锚固卷与混凝土之间的粘结。清孔后,应检查孔深、孔径 及孔壁质量,符合要求后方可进行下一步施工。

3.3 无机锚固卷安装与钢筋植入

无机锚固卷的安装与钢筋植入是无机锚固卷植筋施工的核心环节。首先,根据钻孔直径和深度,选择合适的无机锚固卷规格。将无机锚固卷放入清水中浸泡至饱和状态(具体时间根据产品说明书确定),取出后轻轻挤去多余水分,避免水分过多影响锚固效果。将浸泡好的无机锚固卷缓慢推入钻孔内,直至孔底。推入过程中,应保持无机锚固卷与孔壁紧密接触,避免产生空隙。无机锚固卷安装完成后,应立即将处理好的钢筋插入孔内,并轻轻旋转钢筋,使其与无机锚固卷充分接触,同时排出孔内空气,确保锚固效果。钢筋植入深度需严格按照设计要求执行,使用钢筋定位器等工具进行实时监测,确保钢筋插入深度准确无误。钢筋植入后,应检查其垂直度、位置偏差等,符合要求后方可进行下一步施工。

3.4 养护与成品保护

无机锚固卷植筋施工完成后,需进行适当的养护,以确保无机锚固卷充分固化,达到设计强度。养护期间,应保持施工区域干燥、通风,避免阳光直射和雨水浸泡。根据无机锚固卷的产品说明书,确定养护时间和养护条件,必要时可采取覆盖保湿、喷水养护等措施^[3]。养护期间,还需对已植入的钢筋进行成品保护,防止其受到外力作用而发生位移或损坏。可在钢筋周围设置警示标志,提醒施工人员注意保护。加强施工现场管理,避免在养护期间进行可能影响钢筋稳定的作业活动。养护期满后,应对无机锚固卷植筋工程进行质量验收。检查钢筋的植入深度、垂直度、位置偏差等是否符合设计要求,无机锚固卷与混凝土之间的粘结情况是否良好。验收合格后,方可进行后续施工或投入使用。

4 无机锚固卷在老闸加固植筋中的质量控制

4.1 原材料质量控制

在老闸加固植筋工程中,原材料的质量直接关系到加固效果和结构安全。无机锚固卷作为核心材料,其质量控制尤为重要,应严格筛选供应商,选择具有良好信誉和稳定生产能力的厂家,确保原材料来源可靠。对每批到货的无机锚固卷进行质量检验,包括外观检查(如包装完整性、标识清晰度)、物理性能测试(如抗压强度、抗折强度)和化学成分分析,确保其符合设计要求

和相关标准。同时对钢筋等辅助材料也需进行严格的质量把控,包括钢筋的直径、强度等级、表面质量等,确保其满足施工需求。

4.2 施工过程质量控制

施工过程是确保无机锚固卷植筋质量的关键环节。在施工过程中,应严格执行施工方案和技术规范,确保每一步操作都符合质量要求。具体而言,钻孔作业需精确控制孔位、孔径和孔深,避免对老闸结构造成不必要的损伤;清孔作业要彻底,确保孔内无杂物和水分,以提高无机锚固卷与孔壁的粘结力;无机锚固卷的浸泡时间和安装方式需严格按照产品说明书执行,确保其充分吸水膨胀并与孔壁紧密贴合;钢筋植入时,应确保钢筋垂直、位置准确,并采用适当的固定措施防止钢筋移位。施工过程中还需加强现场监控和记录,及时发现并纠正质量问题,确保施工过程的可追溯性。

4.3 质量检测方法与标准

在老闸加固植筋工程中, 应采用多种检测方法对施 工质量进行全面评估。具体而言,可采用拉拔试验检测 钢筋与无机锚固卷之间的粘结强度,确保其满足设计要 求;采用超声波检测、雷达扫描等无损检测技术对植筋 区域进行内部缺陷检测,及时发现并处理潜在的质量问 题;同时还需对加固后的老闸结构进行整体性能评估, 包括承载能力、变形性能等,确保加固效果达到预期目 标。在质量检测过程中,应严格遵循相关标准和规范, 对于无机锚固卷的性能检测,应依据国家或行业标准进 行,确保检测结果的准确性和可靠性;对于施工质量的 验收, 应参照相关施工规范和质量验收标准进行, 确保 每一道工序都符合质量要求。还应建立完善的质量检测 档案,对检测数据进行记录和分析,为后续的质量管理 和维护提供依据。通过科学的质量检测方法和严格的质 量控制标准,确保无机锚固卷在老闸加固植筋工程中的 质量得到有效保障。

5 无机锚固卷在老闸加固植筋中的应用案例分析

以某地区一座始建于20世纪中叶的老闸加固工程为例,该老闸因长期受水流冲刷、环境侵蚀及材料老化等因素影响,结构出现多处裂缝、钢筋锈蚀等病害,承载能力显著下降,亟需进行加固处理。在综合评估多种加固方案后,决定采用无机锚固卷植筋技术进行加固。在

施工前,通过详细的结构检测与评估,明确了加固区域 及植筋参数。施工过程中,严格按照设计要求进行钻孔 作业,确保孔位精准、孔径与钢筋直径匹配、孔深满足 锚固需求[4]。无机锚固卷选用高性能产品,经充分浸泡 后植入孔内, 并立即插入处理好的钢筋, 确保无机锚固 卷与钢筋、孔壁紧密结合。随后,对植筋区域进行妥善 养护,确保无机锚固卷充分固化。加固完成后,通过拉 拔试验、超声波检测等多种方法对加固效果进行质量检 测,结果显示钢筋与无机锚固卷之间的粘结强度满足设 计要求, 植筋区域无内部缺陷, 老闸整体承载能力显著 提升。经过一段时间的运行监测,老闸结构稳定,未出 现新的病害,加固效果显著。此案例表明,无机锚固卷 植筋技术具有施工便捷、锚固效果好、耐久性强等优 点,在老闸加固工程中具有广阔的应用前景。同时也提 示我们在实际应用中需注重原材料质量控制、施工过程 监控及质量检测标准的执行,以确保加固工程的质量与 安全。

结束语

综上所述,无机锚固卷在老闸加固后锚固植筋中的 应用展现了显著的技术优势与实用价值。通过科学合理 的施工工艺与严格的质量控制,无机锚固卷能够与老闸 结构形成稳固的锚固体系,有效提升结构的承载能力与 稳定性。未来,随着材料科学与施工技术的不断进步, 无机锚固卷植筋技术有望在更多老旧水利设施加固工程 中发挥重要作用,为水利设施的安全运行与可持续发展 提供有力保障。

参考文献

[1]张凯,陈晓峰,卓燕文.无机锚固卷在老闸加固后锚 固植筋中的应用探讨[J].治淮,2019(7):24-25.DOI:10.3969/ j.issn.1001-9243.2019.07.015.

[2]汤举,孙卫华,孙伟伟,胡升,徐建.胶合木植筋技术研究现状及锚固机理试验研究[J].建筑结构,2023,53(S1): 1970-1974.

[3]乔保全.不同直径树脂锚杆锚固性能的试验分析[J]. 机械管理开发,2023,38(05):44-45+48.

[4]刘少伟,周世宇,付孟雄,贾后省,王宝华.树脂锚固剂外包装材料破坏特征对锚杆锚固性能影响研究[J].采矿与安全工程学报,2024,41(04):709-719.