水利工程施工中的成本控制与经济效益分析

樊林果 康保县水务局 河北 张家口 076650

摘 要:文章围绕水利工程施工中的成本控制与经济效益展开分析。阐述了水利工程施工成本的构成要素,包括直接成本与间接成本。介绍了施工前、中、后期成本控制的策略与方法。探讨了成本控制对水利工程经济效益的影响,如提高投资回报率、增强企业市场竞争力、促进资源优化配置。旨在为水利工程施工企业优化成本管理、提升经济效益提供理论支持与实践指导。

关键词:水利工程;成本控制;经济效益

引言

水利工程作为重要的基础设施,其建设对社会发展 意义重大。在水利工程施工过程中,成本控制是关键环 节,直接关系到项目的经济效益和企业的可持续发展。 合理的成本控制不仅能降低工程成本,还能提升企业的 市场竞争力。然而,水利工程施工涉及面广、影响因素 多,成本控制难度较大。因此,深入研究水利工程施工 中的成本控制与经济效益,对于提高工程质量、降低工 程成本、实现企业效益最大化具有重要的现实意义。

1 水利工程施工成本构成要素

1.1 直接成本

在水利工程施工成本体系中,直接成本占据核心地 位,由人工、材料、机械三类费用构成,直接作用于工 程实体建设。人工费用作为其中关键环节,涵盖施工 人员基本工资、绩效奖金、各类补贴及劳动保护支出。 其数值大小受多重因素制约,不同工种的技能要求差异 明显影响人工单价, 如从事复杂基础处理的专业技术工 人,因需掌握特殊工艺与设备操作技能,其薪酬水平明 显高于普通普工;工人的工作时长安排也直接关系人工 成本总量, 合理调配工时, 避免无效加班, 是控制人工 费用的重要途径。材料费用是直接成本的核心构成,涵 盖工程所需的全部实体物资。水泥、钢材等主材价格受 市场供需、运输距离与质量标准三重因素制约: 市场供 需波动引发价格震荡,如钢材价格随铁矿石供应变化起 伏;运输距离直接拉高物流成本,偏远项目尤为显著; 高质量材料虽单价高,但能降低损耗与返工,平衡长期 成本。机械使用费用体现设备资源消耗,包括租赁购 置、折旧维护及能耗支出。工程规模与工艺决定设备配 置,大型水利枢纽对挖掘机、起重机等依赖度高,设备 成本占比大。通过定期保养延长设备寿命、合理规划作 业时间提升使用效率,可有效控制机械费用,避免闲置 浪费。

1.2 间接成本

(1)间接成本虽未直接投入工程实体建造,却在水 利工程施工成本管控及企业运营中占据关键地位。作为 间接成本核心构成,企业管理费系施工单位为保障工程 建设有序推进而产生的组织管理性支出,包含管理人员 薪酬、办公场地租赁、设备购置、办公耗材消耗及差旅 费用等项目。管理机构的规模与运行效率直接作用于企 业管理费水平,构建精简高效的管理架构可有效削减冗 余人力与流程,降低管理成本;借助信息化管理工具优 化管理流程,能提升办公效能,减少时间与资源损耗, 进而压缩管理费用。(2)规费作为间接成本另一重要组 成部分,是工程建设过程中必须列支的费用类别,主要 涵盖工程排污处理费用与施工人员社会保障费用。工程 排污费专项用于施工现场废弃物处置与环境净化,确保 施工活动符合环保标准; 社会保障费则为施工人员提供 医疗、养老等基本权益保障,对维持施工队伍稳定性具 有重要意义。此类费用虽未直接形成工程实体, 但从企 业可持续发展与履行社会责任层面考量,是工程成本不 可或缺的组成部分。(3)实现间接成本的有效控制,要 求企业从管理体系革新、资源配置优化等多维度着手, 通过科学统筹成本与效益关系, 为水利工程顺利实施及 企业长远发展提供坚实保障。

2 水利工程施工成本控制的策略与方法

2.1 施工前期的成本控制

(1)施工前期成本管控对水利工程造价形成具有关键作用,需实现技术与经济要素的深度融合,搭建成本管理基础架构。工程勘察与设计优化作为起始环节,精准全面的地形测量及地质勘查数据,是保障设计方案科学性的前提。运用多方案比选模式,综合分析结构安全、施工可操作性与经济指标,择取最优方案。如大坝

选型时,需结合地质状况、建材分布及施工设备条件, 利用价值工程法权衡功能与成本关系, 防止因设计缺陷 引发施工变更,导致资源浪费与成本增加。(2)施工 组织设计编制是施工前期成本控制的核心要点。通过系 统规划施工全过程资源配置与动态管理,依据工程特点 确定适宜施工工艺及技术路线,能明显提升施工效率。 在大型水利枢纽工程中, 可采用分阶段、分区域施工方 案,优化工序衔接,减少交叉作业干扰,实现工期压缩 与成本降低。(3)构建科学的供应商评估体系是成本控 制的重要支撑。从材料品质、供应稳定性、运输距离等 核心维度,运用加权评分法等量化工具,对供应商进行 综合评估。通过公开招标引入竞争机制,结合集中采购 扩大议价优势,筛选出性价比高的供应商。与优质供应 商建立长期合作关系,能保障材料稳定供应,还可凭借 规模效应降低采购单价与运输成本, 实现供应链成本的 有效管控[1]。

2.2 施工过程的成本控制

施工过程作为成本消耗的主要阶段, 其成本控制需 贯穿工程建设的全周期、各环节,精细化管理实现成本 的动态监控与有效调节。人工成本管控以劳动力资源的 科学调配为核心,依据工程进度曲线与工序衔接需求, 制定动态用工计划。利用BIM技术模拟施工流程,精准 测算各阶段工种、人数需求,避免人员冗余或短缺。推 行班组责任制,将施工任务与成本指标挂钩,激发作业 人员的成本节约意识,提高劳动生产率。材料成本控制 需实施全生命周期闭环管理。借助物联网与RFID技术, 实现材料进场验收、仓储保管到现场使用的实时监控与 溯源统计,有效降低损耗。通过建立价格波动预警机 制,结合施工进度把握采购时机,优化库存减少资金占 用。在关键施工环节改进工艺、优化配合比,降低材料 单位消耗量。机械成本控制核心在于设备资源的高效利 用。依据施工需求科学配置设备,避免资源浪费;利用 GPS与远程监控搭建动态调度系统,优化设备作业路线与 时间,提升利用率。制定预防性维护计划,定期检修保 养设备,减少故障停机时间,延长设备寿命,降低运维 成本。施工质量管控与成本紧密相连,质量缺陷导致的 返工将大幅增加成本。通过建立"自检、互检、专检" 制度,结合无损检测等技术手段,确保工程质量一次达 标。同时针对地质、天气等风险制定应急预案,降低不 确定性因素带来的成本增加[2]。

2.3 竣工验收阶段的成本控制

(1)竣工验收阶段作为水利工程成本管控的关键终程,承担着成本管理成果校验与效益锁定的核心功能。

此环节以工程结算决算为工作重心,通过组建专业审核 团队,依据合同文件、设计变更资料及现场签证记录, 运用清单计价规范与定额标准,对工程量实施逐项核 查。借助工程造价审计软件与大数据分析技术,参照同 类工程指标开展数据比对,精准识别异常数据,保障结 算价款的真实性与可靠性。(2)剩余材料及设备处置管 理是提升成本回收效率与资源利用率的重要路径。需建 立科学的库存盘点机制,对剩余材料进行分类评估,结 合材料属性与市场需求,通过退库、调剂或折价变卖等 方式减少物资积压。针对模板、脚手架等周转材料,实 施专业化维护保养,实现资源循环利用,降低后续工程 采购成本;对施工设备进行全面性能评估,通过租赁、 二手交易等方式优化资产配置,实现设备剩余价值的最 大化回收。(3)工程保修管理需构建系统化长效机制, 在竣工验收前制定详尽的保修方案,明确保修范围、责 任划分及费用承担模式。建立科学的保修费用预提制 度,综合考量工程规模、结构特点及施工质量,合理预 留保修准备金。依托信息化管理平台,对保修事项进行 动态跟踪与响应,及时处理工程质量缺陷,有效控制维 修成本。通过上述多维度精细化管理措施,实现水利工 程成本的最终控制与经济效益的充分释放,完成工程全 生命周期成本管理闭环[3]。

3 成本控制对水利工程经济效益的影响

3.1 提高投资回报率

在水利工程建设领域,投资回报率是衡量项目经济 效益的关键指标,而成本控制是提升这一指标的核心路 径。有效的成本控制体系通过对施工全流程的精细化 管理,从多个维度降低工程投资支出。在施工前期,通 过精准的工程勘察与多方案技术经济比选, 优化设计方 案,避免因设计不合理导致的后期变更成本。在水坝设 计中,依据地质条件与施工能力选择适宜坝型,可减少 基础处理和施工难度,直接降低建设成本。施工过程 中,通过动态化的资源调配和先进技术应用,实现成本 的有效管控。利用BIM技术进行施工模拟,能提前发现 施工冲突, 优化工序安排, 减少工期延误带来的额外成 本; 在材料管理方面, 借助物联网技术实现全流程监 控,降低损耗率,节约采购资金。这些措施使得工程总 造价得以有效控制,在保证工程质量和功能完整性的前 提下,大幅降低项目初始投资规模。投资规模的减少与 工程预期收益的稳定,直接推动投资回报率的提升。对 于水利工程投资者而言,同等收益条件下,成本的降低 意味着利润空间的扩大,资金回收周期缩短,资金使用 效率提高。这种经济效益的提升增强了投资者对水利工 程领域的信心,更为后续项目的持续开展提供了坚实的 资金保障和动力支持。

3.2 增强企业市场竞争力

(1) 在水利工程建设市场竞争格局下,成本管控效 能直接关乎企业市场位势。贯穿项目全生命周期的成本 管理体系, 从投标报价策略制定, 到施工过程资源优化 配置,再到项目交付后的成本核算,对企业经营效益与 市场竞争能力形成决定性影响。通过精细化成本控制实 现的价格优势, 可助力企业在投标阶段以更具吸引力的 报价方案获取项目机会, 其核心路径包括施工组织方案 的动态优化、资源要素的精准调配以及材料损耗率的有 效控制。(2)成本优势的价值延伸体现在质量提升与服 务升级维度。通过成本节约形成的资金储备,为施工技 术革新和设备迭代提供支撑,推动企业采用新型施工工 艺和智能化装备,提升工程质量标准与施工效率水平。 这种良性投入机制强化了工程产品品质,还通过优质服 务输出增强业主满意度,形成差异化竞争优势;稳健的 成本控制有助于构建企业资金链良性循环, 为产能扩 张、人才梯队建设和技术研发储备提供坚实财务保障。 (3)伴随项目经验的持续沉淀与品牌价值的累积增长, 企业市场信誉度逐步提升。在市场竞争环境中, 良好的 履约记录与质量口碑构成获取优质项目资源的核心竞争 力,吸引更多潜在合作机会。这种由成本控制驱动的 "项目承接一品牌塑造一市场拓展"螺旋上升机制,不 断巩固企业在水利工程领域的市场地位,持续提升其行 业话语权与市场影响力[4]。

3.3 促进资源优化配置

成本控制作为水利工程施工管理的核心手段,本质上是对人力、物力和财力等资源的优化配置过程。通过成本控制的驱动,企业需要对各类资源进行科学规划和动态调整,以实现资源利用效率的最大化。在人力资源管理方面,根据施工进度和工序需求,制定精准的用工计划,避免人员闲置或短缺现象,实现劳动力资源的高效利用。通过技能培训和绩效考核机制,提升员工工作效率,充分发挥人力资源的价值。物力资源的优化配置体现在材料和设备管理的精细化。在材料采购环节,通

过建立供应商评估体系,选择质优价廉的材料,并结合市场价格波动和施工进度,合理安排采购时间和数量,降低库存成本和采购成本;在设备管理方面,根据工程特点和施工需求,科学配置施工机械,避免设备闲置浪费,同时通过GPS监控和预防性维护计划,提高设备利用率和使用寿命,降低设备运维成本。财力资源的优化配置则体现在资金的合理分配和使用上。通过成本预算和动态监控,确保资金流向关键施工环节和重要资源投入,避免资金浪费和无效支出。这种全方位的资源优化配置,降低了工程施工成本,还减少了社会资源的浪费,提高了资源的整体利用效率。从宏观层面看,资源的优化配置促进了水利工程行业的可持续发展,使有限的社会资源能够得到更合理的利用,为经济社会的长期稳定发展提供有力支撑。

结束语

水利工程施工中的成本控制与经济效益紧密相连。 通过对施工成本的构成要素进行深入分析,并采取有效 的成本控制策略与方法,如施工前期的勘察设计优化、 施工过程的全要素管控以及竣工验收阶段的精细化管 理,能够显著降低工程成本。成本控制是提升水利工 程经济效益的核心路径,不仅能提高投资回报率、增强 企业市场竞争力,还可促进资源优化配置。施工企业需 重视成本管控,创新管理方法,实现经济与社会效益共 赢,推动行业发展。

参考文献

[1]成杨,汤怀云.水利工程预决算编制中的成本控制策略与经济效益评估[J].首席财务官,2025,21(2):43-45.

[2]陈志远.水利工程施工中的项目管理与成本控制策略[J].中文科技期刊数据库(全文版)工程技术,2025(2):026-029.

[3]杨涛.水利工程施工成本管理的影响因素及控制措施分析[J].中文科技期刊数据库(全文版)工程技术,2025(2):022-025.

[4]陈金陵.水利工程施工中的成本控制与经济效益探析[J].中文科技期刊数据库(全文版)工程技术,2024(11): 143-146.