曲线连续刚构桥梁施工线形控制方法探究

余思昕 广东省高速公路有限公司 广东 广州 510000

摘 要: 曲线连续刚构桥梁施工线形控制是保障结构受力、行车安全与耐久性的核心技术。因平面曲线存在,梁体受离心力、扭矩与弯矩耦合作用,悬臂施工中偏差易累积放大。其需综合考虑结构体系转换、材料特性、环境干扰等变量,通过精细化模型定量分析,结合现场实时监测调整参数。曲线梁段需协同控制平面与竖向线形,避免扭转效应影响稳定性。有效的线形控制可确保成桥线形与内力合理,延长桥梁寿命,依赖理论与实践动态结合。

关键词: 曲线连续刚构桥梁; 施工线形控制; 方法

引言

曲线连续刚构桥梁因受力复杂、施工难度大,其线 形控制对成桥质量至关重要。施工中,结构自身特性、 环境因素及施工工艺等多重变量相互作用,易导致线形 偏差,影响结构安全与使用寿命。当前,如何精准把控 各施工阶段线形,成为桥梁工程领域的重要课题。本文 围绕曲线连续刚构桥梁施工线形控制,分析影响因素, 探究精细化预控、实时监测、特殊阶段控制及信息化技 术应用等方法,为提升施工精度提供参考。

1 曲线连续刚构桥梁施工线形控制概述

曲线连续刚构桥梁施工线形控制是确保桥梁结构在 施工过程中及成桥后符合设计预期几何形态的核心技术 环节,其精度直接影响结构的受力性能、行车安全性及 耐久性。此类桥梁因存在平面曲线,梁体在施工阶段会 受到离心力、扭矩与弯矩的耦合作用, 加之悬臂施工过 程中节段逐段浇筑或拼装的特点,任何一个施工步骤的 线形偏差都可能经累积效应放大, 最终导致成桥线形偏 离设计目标,甚至引发结构附加应力超限。施工线形控 制需综合考虑结构体系转换、材料特性变化、环境因素 干扰等多重变量,其中混凝土的收缩徐变会使梁体产生 长期变形、温度变化则可能导致梁体在日照、骤冷等条 件下出现瞬时线形波动,而挂篮变形、施工荷载分布不 均也会对各节段的立模标高产生显著影响。通过建立精 细化的施工监控模型,可实现对这些变量的定量分析, 模型需包含结构几何参数、材料力学性能、施工荷载工 况等基础数据,并结合有限元分析方法模拟各施工阶段 的变形趋势, 为现场施工提供立模标高预抛值。现场监 控则通过高精度测量仪器对已施工节段的线形参数进行 实时采集,包括梁体顶面标高、轴线偏位、截面尺寸 等,将实测数据与理论计算值进行对比分析,识别偏差 产生的原因并及时调整后续施工参数。对于曲线梁段,

还需特别关注平面线形与竖向线形的协同控制,避免因 平面偏位引发梁体扭转效应加剧,进而影响结构整体稳 定性。有效的线形控制能够使桥梁在施工完成后既满足设计的平顺性要求,又能保证结构内力处于合理分布状态,减少运营阶段因线形不良导致的附加荷载,延长桥梁使用寿命,这一过程需要理论计算与现场实践的紧密结合,通过动态调整实现施工精度的持续优化。

2 影响曲线连续刚构桥梁施工线形的因素

2.1 结构自身因素

曲线连续刚构桥梁的结构自身特性对施工线形具有 根本性影响,其中梁体的几何参数是首要变量。曲线半 径大小直接决定梁体施工阶段的扭矩分布, 半径小, 悬 臂浇筑时梁体侧向偏转变形就更大。梁高、腹板厚度等 截面尺寸改变, 会通过影响结构刚度分布, 进而左右各 节段挠度发展。材料力学性能波动不可小觑。混凝土弹 性模量、抗压强度等指标,会随养护条件与龄期变化。 早期强度不够,梁体在挂篮荷载下易产生超额弹性变 形;后期强度增长速率不同,会影响收缩徐变进程,使 梁体长期变形偏离理论值。结构体系转换会引发内力重 分布。悬臂端从临时固结转为连续刚构体系时, 墩梁结 合部约束突变,梁体可能产生附加转角。在曲线梁段, 这种转角效应会耦合为平面内位移偏差,干扰施工线 形。预应力张拉是影响结构线形的关键。预应力钢束的 布置、张拉顺序及实际张拉力与设计值的偏差,会改变 梁体内力状态。曲线段钢束张拉产生的径向力,还可能 引发梁体局部挠曲。若张拉控制不佳,梁体线形极易出 现波浪形起伏。结构的自重分布不均也是重要因素,曲 线梁体在施工阶段的自重重心线与设计轴线存在偏差, 这种偏心距会产生附加弯矩和扭矩,导致梁体在竖向和 平面内同时变形,增加线形控制的复杂性[1]。

2.2 施工环境因素

温度变化是影响曲线连续刚构桥梁施工线形的最活 跃环境因素, 日照辐射会使梁体表面产生显著的温度梯 度,向阳面与背阴面的温差可达到10℃以上,导致梁体 发生非均匀热胀冷缩, 曲线段因截面不对称受温度影响 更为明显, 易产生侧向弯曲和扭转的耦合变形。大气湿 度的波动会影响混凝土的收缩速率,高湿度环境下水分 蒸发缓慢,早期收缩变形减小,但长期徐变变形可能增 大, 而干燥环境则会加速表面收缩, 若此时约束条件较 强,可能引发梁体开裂并伴随线形异常。风力荷载对悬 臂施工阶段的梁体线形影响显著,横向阵风荷载在曲线 梁段上会产生侧向推力,这种推力与梁体的曲线形态耦 合后,可能使悬臂端产生平面内的振动变形,当风速超 过施工控制限值时,振动累积效应会导致立模标高出现 瞬时偏差。基础不均匀沉降是另一个关键环境因素,曲 线桥梁的桥墩基础在软土地层中易因荷载分布不均产生 差异沉降,桥墩的沉降差通过墩梁固结作用传递至梁 体, 使悬臂端产生倾斜变形, 这种变形在曲线段中会被 放大为平面和竖向的复合偏差。施工期间的降水和地下 水水位变化可能导致地基土的物理力学性能改变,进 一步加剧基础沉降的不确定性, 给线形控制带来额外 挑战。

2.3 施工工艺因素

挂篮的性能参数对曲线连续刚构桥梁的施工线形控 制精度起决定性作用,挂篮的自重分布、刚度特性及行 走系统的摩擦系数直接影响立模阶段的标高设置, 当 挂篮在曲线梁段移动时,导向装置的精度不足会导致挂 篮自身产生侧向偏移, 进而使模板定位出现平面偏差。 悬臂浇筑的施工顺序安排至关重要,节段浇筑的先后顺 序会改变梁体的荷载累积路径, 若曲线内侧节段浇筑速 度过快,可能使梁体因单侧荷载过大产生扭转变形,而 混凝土浇筑过程中的布料不均匀则会导致截面受力不对 称,引发局部挠曲。模板的安装精度是保证线形的基 础,模板的拼接误差在曲线段会因累积效应放大,接缝 处的错台不仅影响外观质量, 更会导致混凝土浇筑后截 面尺寸出现突变, 改变梁体的刚度分布, 此外模板的预 拱度设置若未考虑曲线段的扭矩影响, 会使浇筑后的梁 体实际标高与设计值产生系统性偏差。预应力张拉工艺 的控制水平直接影响梁体线形, 张拉设备的标定误差、 钢束的实际伸长量与理论计算值的差异,会导致梁体产 生非预期的弹性压缩, 曲线段钢束在张拉过程中若锚固 位置偏差,还会产生附加弯矩,使梁体发生局部弯曲。 施工荷载的分布状态也是重要因素, 堆放在悬臂端的材 料、施工机具的移动路径若偏离设计荷载位置,会在曲 线梁段产生附加扭矩和弯矩,导致梁体挠度出现异常波动,增加线形调整的难度^[2]。

3 曲线连续刚构桥梁施工线形控制方法

3.1 精细化施工前的参数预控

(1)基于设计图纸建立全桥三维有限元模型,模型 需精确纳入曲线半径、梁体截面尺寸、墩柱刚度等几何 参数,同时考虑施工阶段挂篮自重、预应力钢束布置形 式等荷载条件,通过模拟各节段悬臂浇筑过程中的变形 响应, 计算不同施工阶段的理论挠度值与预抛高量, 为 立模标高设置提供初始基准,模型需经过多工况验证, 确保在曲线段扭矩与弯矩耦合作用下的计算精度, 避免 因模型简化导致参数预控偏差。(2)对混凝土材料进行 针对性试验,测定不同龄期的弹性模量、收缩徐变系数 及强度发展规律,结合现场养护条件建立材料性能随时 间变化的数学模型,将试验数据反馈至有限元分析中, 修正理论计算的变形参数,同时对预应力钢束进行张拉 试验, 记录实际张拉力与伸长量的关系曲线, 为施工中 钢束张拉控制提供修正依据,减少材料性能波动对线性 的影响。(3)制定挂篮预压方案,通过分级加载测试挂 篮在不同荷载作用下的弹性变形与非弹性变形,绘制荷 载-变形曲线并确定挂篮的变形规律,特别关注曲线段挂 篮行走时的侧向位移特性,根据预压结果调整挂篮模板 的初始定位参数,确保挂篮在施工过程中的变形处于可 控范围, 为节段线形精度奠定基础。

3.2 施工过程中的实时监测与反馈

(1)采用全站仪、水准仪等高精度测量仪器,对已 施工节段的梁体顶面标高、轴线偏位及截面尺寸进行定 期监测,测量频率随施工阶段动态调整,在挂篮前移、 预应力张拉等关键工序后加密观测,数据采集需避开日 照强烈时段以减少温度影响,将实测值与理论计算值进 行对比, 生成偏差分析报告, 明确变形差异的幅值与分 布规律。(2)建立实时数据传输与分析系统,将现场监 测数据同步传输至计算平台,通过预设的偏差阈值判断 线形状态, 当偏差超过限值时自动触发预警机制, 结合 施工日志追溯偏差产生的具体环节, 若因挂篮变形异常 导致偏差,需重新校准挂篮刚度参数;若因预应力张拉 不足引发变形,则调整后续张拉控制力,通过闭环反馈 实现参数的动态修正。(3)针对曲线段平面与竖向线形 的协同控制,开发耦合监测算法,将平面轴线偏位与竖 向挠度数据进行关联分析, 识别因平面偏差引发的扭转 效应,通过调整对应节段的立模预抛值抵消扭转影响, 同时在施工中同步监测墩梁结合部的转角与位移,确保 结构体系转换过程中的变形协调, 避免附加内力导致线

形失控^[3]。

3.3 特殊施工阶段的线形控制

(1)在悬臂端合龙阶段,需精确控制合龙段两侧梁体的相对标高与轴线偏差,通过设置临时刚性支撑限制梁体相对位移,同时监测合龙段温度场分布,选择温度稳定的时段进行混凝土浇筑,浇筑过程中实时测量梁体变形,根据实测数据调整支撑顶推力,抵消温度变化与混凝土收缩产生的附加变形,确保合龙段线形平顺过渡。(2)结构体系转换阶段,重点监测临时固结解除过程中的梁体位移与转角变化,通过有限元模型预判体系转换引发的变形量,在解除临时约束前设置反向预偏量,逐步释放约束以控制变形速率,曲线段需特别关注体系转换时的扭矩重分布,通过增设临时抗扭支撑限制梁体平面扭转,避免因约束突变导致线形偏差累积。

(3)预应力张拉阶段的线形控制需结合钢束张拉顺序分步实施,张拉前测量梁体初始线形,张拉过程中实时监测梁体挠度与平面位移的变化,记录每束钢束张拉完成后的变形增量,与理论计算值对比后调整后续钢束张拉力,曲线段钢束张拉时需监测梁体侧向挠曲,通过优化张拉对称度减少径向力引发的局部变形,确保张拉后梁体线形符合设计趋势。

3.4 信息化与智能化技术应用

(1)引入BIM技术构建全生命周期模型,将设计参数、施工监测数据与模型构件关联,实现线形控制的可视化管理,通过模型碰撞检测提前发现曲线段梁体与挂篮的空间位置冲突,优化施工步骤以减少线形干扰,同时利用BIM模型进行施工模拟,预判各阶段变形趋势并生成动态线形控制方案,为现场施工提供直观指导。(2)采用自动化监测系统替代传统人工测量,在梁体关键截面布设传感器阵列,实时采集标高、位移、应变等参

数,数据经无线传输至云端平台后,通过机器学习算法识别变形规律并预测后续发展趋势,当预测值超出允许范围时自动生成调整建议,提高线形控制的响应速度与精度,尤其适用于曲线段复杂变形的实时追踪。(3)开发线形控制决策支持系统,整合有限元计算、监测数据与历史工程案例,通过大数据分析建立影响因素与线形偏差的映射关系,当施工中出现异常变形时,系统快速匹配相似工况并推送最优调整方案,同时结合数字孪生技术构建虚拟桥梁模型,将现场实测数据与虚拟模型实时比对,通过虚实交互实现线形控制的精准优化,提升曲线连续刚构桥施工的智能化水平^[4]。

结语

综上所述,曲线连续刚构桥梁施工线形控制需统筹 结构自身、环境及施工工艺等多方面因素。通过精细化 施工前参数预控奠定基础,施工中实时监测与反馈实现 动态调整,特殊阶段针对性控制保障关键节点质量,结 合信息化与智能化技术提升效率与精度,可有效控制线 形偏差。这一过程需理论与实践紧密结合,以确保成桥 后结构受力合理、线形平顺,为桥梁安全运营与长期耐 久性提供有力保障。

参考文献

[1]侯玉平.曲线连续刚构桥梁施工线形控制方法探究 [J].工程建设与设计,2022(16):155-157.

[2]刘嘉欣,钟元庆,丘礼球,等.连续刚构桥跨中施工预拱度拟合曲线优化[J].长江工程职业技术学院学报,2020,37(3):4-8.

[3]甘强,邢运鹏.连续刚构桥梁施工线形监测与控制措施研究[J].交通世界,2025(7):129-131.

[4]魏钧辰.连续刚构施工线形控制探讨[J].内蒙古煤炭经济,2020(20):132-133,136.