浅析建筑施工绿色建筑施工技术

邱 凯 安平县建投市政工程有限公司 河北 衡水 053600

摘 要:绿色建筑施工技术是实现建筑行业可持续发展的关键路径。通过节能、节水、节材及环境保护等技术的综合应用,可显著降低建筑施工对资源环境的消耗与影响。然而,技术水平局限、成本投入较高及施工管理复杂等问题,制约其广泛推广。深入剖析其应用现状与困境,针对性提出加强技术研发、优化成本控制及提升管理水平等策略,对推动建筑行业绿色转型、践行生态文明建设具有重要现实意义。

关键词:建筑施工;绿色建筑;施工技术

引言

在"双碳"目标与生态文明建设战略背景下,建筑行业向绿色低碳转型已成必然趋势。绿色建筑施工技术凭借其高效利用资源、减少环境污染的特性,成为行业发展的核心驱动力。本文聚焦节能、节水、节材及环境保护等具体施工技术,系统阐述其在建筑施工中的应用方式。深入探讨该技术应用过程中面临的技术、成本与管理等问题,并提出相应解决对策,旨在为推动绿色建筑施工技术发展提供理论参考与实践指导。

1 绿色建筑施工技术概述

绿色建筑施工技术是在建筑全生命周期内, 通过科 学技术手段与创新管理模式,实现资源高效利用、环境 负荷最小化的综合性技术体系。该技术聚焦于施工过程 中的能耗、物耗及环境污染问题,通过先进工艺和设备 的运用,对传统施工模式进行革新,旨在达成建筑工程 经济效益与生态效益的有机统一。在材料技术层面,绿 色建筑施工强调选用环保型、可再生材料。例如,新型 墙体材料采用工业废料为原料, 既减少了自然资源的过 度开采,又解决了工业固废的处理难题;高性能混凝土 通过优化配合比设计,降低水泥用量,提升耐久性,延 长建筑使用寿命,从而减少后期维护与重建带来的资源 消耗。在能源管理方面,施工现场引入智能能耗监测系 统,实时采集施工机械、照明等设备的用电数据,结合 施工进度动态调控能源供应,太阳能、风能等可再生能 源也逐步应用于临时设施供电,有效降低对传统化石能 源的依赖。施工工艺的绿色化创新同样关键。装配式建 筑技术将建筑构件在工厂预制后运输至现场组装,减少 了现场湿作业与建筑垃圾产生,提升施工效率的同时降 低粉尘、噪声污染;雨水回收利用系统通过收集、净化 施工场地雨水,用于混凝土养护、降尘喷洒等环节,显 著节约水资源。BIM技术的应用贯穿施工全过程,通过三 维建模模拟施工流程,提前发现设计冲突与施工难点,优化施工方案,避免因设计变更导致的材料浪费和工期延误。绿色建筑施工技术正通过多维度的技术集成与创新实践,推动建筑行业向资源节约、环境友好的可持续方向转型,为城市建设与生态环境的协调发展提供技术支撑。

2 绿色建筑施工技术在建筑施工中的具体应用

2.1 节能施工技术

(1)在建筑围护结构方面,外墙保温系统采用高效 保温材料,如聚苯板、岩棉板等,通过合理的铺贴工 艺,降低墙体传热系数,减少室内外热量交换。屋面则 选用轻质、保温性能佳的材料, 像泡沫混凝土、挤塑聚 苯板等,同时设置通风隔热层,有效阻挡太阳辐射热 传入室内,降低空调制冷能耗。(2)照明系统大力推 广LED灯具,其具有发光效率高、能耗低、寿命长的优 势。结合智能控制系统,依据室内外光线强度、人员活 动情况自动调节照明亮度与开关,避免不必要的能源浪 费。在大型建筑中, 合理设计自然采光方案, 通过优化 建筑朝向、增加采光面积、采用导光管等手段, 充分利 用自然光,减少人工照明使用时间。(3)暖通空调系统 采用节能型设备,如高效冷水机组、节能风机等,并配 备智能控制系统,实现对室内温度、湿度的精准调控, 避免过度制冷或制热。推广地源热泵、空气源热泵等可 再生能源利用技术,利用地下浅层地热资源或空气中的 热量进行供热和制冷,降低对传统化石能源的依赖,提 升能源利用效率[1]。

2.2 节水施工技术

(1)施工现场建立雨水收集系统,在场地内设置雨水收集池、沉淀池等设施,将建筑物屋顶、地面等区域的雨水进行收集。经过沉淀、过滤等简单处理后,用于施工现场的道路洒水降尘、绿化灌溉、车辆冲洗等非饮

用水用途,有效减少市政自来水的使用量,提高水资源的循环利用率。(2)在混凝土搅拌环节,采用先进的搅拌设备与工艺,精确控制水灰比,避免因加水过多导致的水资源浪费。对混凝土搅拌过程中产生的废水进行回收处理,通过设置沉淀池、过滤装置等,将废水中的水泥颗粒等杂质分离出来,处理后的清水重新用于混凝土搅拌,实现水资源的循环利用。(3)在施工现场的生活区域与办公区域,安装节水器具,如感应式水龙头、节水马桶等。感应式水龙头可根据人员使用情况自动控制水流,避免长流水现象;节水马桶通过优化冲水结构与水量,在满足使用需求的前提下,减少每次冲水量。加强对施工现场人员的节水宣传教育,提高全员节水意识,从源头上减少水资源浪费。

2.3 节材施工技术

(1) 在施工前,利用建筑信息模型(BIM)技术对建 筑结构、装修等进行精细化设计与模拟分析, 提前发现 设计中存在的问题与不合理之处, 优化设计方案, 减少 因设计变更导致的材料浪费。在施工过程中,严格按照 设计图纸进行施工,避免随意更改设计,确保材料使用 的准确性与合理性。(2)推广使用预拌混凝土和商品砂 浆,由专业厂家集中生产,保证产品质量稳定,减少施 工现场搅拌过程中的材料损耗。准确计算混凝土和砂浆 的使用量, 合理安排供应计划, 避免因过多搅拌或剩余 导致的材料浪费。对于结构工程,优先选用高强钢筋和 高性能混凝土,在满足结构安全要求的前提下,减少材 料用量。(3)提高周转材料的使用效率,如模板采用标 准化、可重复利用的钢模板、铝合金模板等,通过合理 的模板设计与施工工艺,增加模板的周转次数。脚手架 采用工具式脚手架,便于安装、拆卸与周转使用。加强 对周转材料的管理与维护, 定期进行检查、维修, 延长 其使用寿命,降低材料成本。

2.4 环境保护施工技术

(1)在施工现场设置有效的防尘措施,如对易产生 扬尘的土方、砂石等材料进行覆盖或密闭存放,在场地 内配备洒水车,定期对道路、施工区域进行洒水降尘。 对施工现场的进出口设置车辆冲洗设施,对驶出车辆进 行冲洗,避免车辆带泥上路,减少扬尘污染。(2)合理 安排施工时间,尽量避免在居民休息时间进行高噪声作 业,如夜间禁止进行打桩、电锯等高噪声施工活动。对 施工现场的噪声源,如施工机械、设备等,采取降噪措 施,如安装消声器、设置隔音罩等,降低噪声对周边环 境与居民的影响。(3)对施工现场产生的建筑垃圾进 行分类收集与处理,将可回收利用的建筑垃圾,如废钢 材、废木材等,进行回收再利用;对不可回收利用的建筑垃圾,如混凝土块、砖石等,运至指定的建筑垃圾填埋场进行填埋处理。在施工过程中,尽量减少废弃物的产生,从源头上控制环境污染^[2]。

3 绿色建筑施工技术应用面临的问题与对策

3.1 面临的问题

3.1.1 技术水平有限

在绿色建筑施工领域,技术水平的局限性成为制约 其发展的关键因素。当前,部分绿色施工技术适配性欠 佳,不同地域气候、地质条件以及建筑功能需求差异 大,现有技术难以全面适配多样化工程场景。像地源热 泵技术,在地质结构复杂区域,换热效率大受影响,系 统运行不稳定。绿色建筑施工技术集成化程度低,各单 项技术间缺乏有效协同机制,难以构建高效技术体系。 例如雨水收集系统与中水回用系统,设计和施工环节衔 接不充分,水资源循环利用效率降低。技术创新迭代缓 慢,无法快速响应市场对绿色建筑品质的更高要求,新 节能材料、环保工艺研发周期长,推广应用滞后,使得 绿色建筑施工技术难以在短时间内实现整体水平的显著 提升。

3.1.2 成本较高

绿色建筑施工成本居高不下,严重影响了其推广应 用的积极性。绿色建筑材料的生产工艺复杂,对原材料 的品质要求严苛,导致其采购价格普遍高于传统建筑 材料。如高性能的隔热保温材料,其成本是普通保温材 料的数倍,大幅增加了建筑的初始投资。施工过程中, 绿色建筑施工技术的应用往往需要配备特殊的施工设备 和专业操作人员,这进一步推高了施工成本。以装配式 绿色建筑为例,预制构件的运输、吊装设备投入以及专 业安装人员的雇佣费用显著高于传统现浇施工方式。绿 色建筑施工过程中的能耗管理、废弃物处理等环节也需 要额外的成本投入,从原材料采购到施工全流程的高成 本,使得绿色建筑在市场竞争中处于价格劣势,许多建 设单位因成本压力对绿色建筑施工技术望而却步^[3]。

3.1.3 施工管理难度大

绿色建筑施工管理的复杂性远超传统建筑施工。由于绿色建筑涉及多项新技术、新工艺,施工过程中的质量控制难度显著增加。不同技术之间的交叉作业频繁,各工序之间的衔接要求更为精准,一旦某个环节出现偏差,将影响整个建筑的绿色性能。例如,光伏建筑一体化施工中,光伏板的安装精度直接关系到发电效率和建筑防水性能,对施工管理提出了极高的要求。绿色建筑施工对施工现场的环境管理也更为严格,需要采取特殊

措施减少施工扬尘、噪声污染以及废弃物排放,这增加了管理的工作量和管理成本。绿色建筑施工进度的把控也存在挑战,新技术应用可能带来的施工工艺调整、设备调试等问题,容易导致工期延误,如何在保障绿色施工质量的前提下合理安排施工进度,成为施工管理面临的重要难题。

3.2 对策

3.2.1 加强技术研发与人才培养

为突破绿色建筑施工技术瓶颈,需加大技术研发投入,推动产学研深度融合。鼓励企业与科研机构合作,针对不同地域、不同类型建筑的特点,开展绿色施工技术的专项研究,研发适配性更强的新技术、新材料和新工艺。例如,针对南方湿热地区,研发高效的通风隔热技术和材料;针对北方严寒地区,优化建筑保温体系和供暖技术。注重培养专业的绿色建筑施工人才,通过企业内部培训、行业交流等方式,提升施工人员对绿色施工技术的掌握程度和应用能力。建立完善的人才培养体系,从施工操作人员到技术管理人员,全面提升其专业素养,确保绿色施工技术能够在施工现场准确、高效地实施,为绿色建筑施工技术的创新与发展提供坚实的人才支撑。

3.2.2 优化成本控制

降低绿色建筑施工成本是推动其广泛应用的关键。 在材料采购环节,建立绿色建筑材料集中采购平台,整 合供应链资源,通过规模化采购降低材料成本。加强对 材料供应商的管理和评估,选择性价比高的供应商,确 保材料质量的同时控制采购成本。在施工过程中,通过 优化施工组织设计,合理安排施工顺序和施工进度,减 少因工序不合理导致的返工和工期延误成本。推广应用 先进的施工技术和设备,提高施工效率,降低人工成本 和设备使用成本。例如,采用BIM技术进行施工模拟和优 化,提前发现并解决施工中的问题,避免不必要的成本 增加。积极探索新型商业模式,如合同能源管理等,通 过后期节能收益来分摊前期建设成本,实现绿色建筑成 本的有效控制。

3.2.3 提升施工管理水平

提升绿色建筑施工管理水平是保障施工质量和进度的重要举措。引入信息化管理手段,借助物联网、大数据技术,对施工过程实时监控管理。在施工现场安装各类传感器,能实时采集施工质量与环境数据,便于及时发现问题并整改。建立完善的施工质量管理体系也必不可少,需明确各工序质量标准与验收规范,强化对施工过程的质量检验与监督。进度管理上,运用项目管理软件编制并动态调整进度计划,合理安排工序时间,充分考虑新技术应用影响,预留弹性时间。加强施工现场环境管理,制定详细环保措施,定期监测处理扬尘、噪声、废弃物等,保证施工全过程符合环保要求。通过这些举措,从质量、进度、环保等多维度发力,实现施工管理的精细化和科学化^[4]。

结语

综上所述,绿色建筑施工技术对建筑行业可持续发展至关重要,节能、节水、节材及环境保护技术的应用,有效提升了施工的资源利用效率与环境友好性。尽管当前面临技术、成本和管理等挑战,但通过加强技术研发、优化成本控制和提升施工管理水平等措施,可逐步克服障碍。未来,随着技术进步与行业规范完善,绿色建筑施工技术将迎来更广阔的应用前景,为实现建筑行业高质量发展奠定坚实基础。

参考文献

[1]常宁.浅析建筑施工绿色建筑施工技术[J].建筑工程技术与设计,2021(3):1523.

[2]姜涛.浅析建筑施工绿色建筑施工技术[J].房地产导刊,2021(20):65-66.

[3]未万兴.浅析建筑施工绿色建筑施工技术[J].空中美语.2020(11):843-844.

[4]李涛涛.浅析建筑施工绿色建筑施工技术[J].电脑高手,2020(3):3115-3116.