复杂地质条件下深基坑岩土边坡稳定性研究

尉海江

浙江华东岩土勘察设计研究院有限公司 浙江 杭州 310012

摘 要:本文聚焦复杂地质条件下深基坑岩土边坡稳定性研究。先阐述软弱土层、岩溶地貌、高地下水位等复杂地质条件类型及其对边坡稳定性的影响,接着介绍传统分析技术、现代数值模拟技术和综合分析方法等稳定性分析手段,然后提出优化支护结构设计、地基处理与加固、施工过程监测与控制等提高稳定性的措施,为复杂地质条件下深基坑工程提供理论与实践参考。

关键词:复杂地质条件;深基坑;岩土边坡;稳定性研究

1 复杂地质条件的类型

1.1 软弱土层

软弱土层通常具有高压缩性、低强度和低渗透性等特点,常见的软弱土包括淤泥、淤泥质土、软黏土等。在软弱土层中进行深基坑开挖时,由于土体的强度较低,边坡容易发生滑移和坍塌。软弱土层的压缩性较大,在基坑开挖过程中,土体会产生较大的沉降,可能导致周边建筑物和地下管线的损坏。软弱土层的渗透性低,排水困难,在降水过程中可能会引起土体的固结沉降,进一步影响边坡的稳定性。例如,在沿海地区的一些城市,地下广泛分布着淤泥质软土。在进行深基坑工程时,如果不采取有效的支护措施,基坑边坡很容易出现滑动破坏,给工程带来严重的安全隐患。

1.2 岩溶地貌

岩溶地貌是由地下水对可溶性岩石(如石灰岩、白云岩等)进行长期溶蚀作用而形成的地貌形态,常见的岩溶地貌有溶洞、溶沟、石芽等。在岩溶地区进行深基坑开挖时,岩溶的存在会对边坡的稳定性产生重大影响[□]。溶洞的存在会破坏岩体的完整性,降低岩体的强度,当基坑开挖至溶洞附近时,边坡容易发生坍塌。岩溶地区的地下水位变化较大,在降水过程中,可能会导致地下水位下降,引起溶洞顶板的失稳,从而影响边坡的稳定性。比如,我国西南地区的部分城市,地下岩溶发育较为普遍。在深基坑工程中,经常会遇到溶洞等岩溶地质问题,给施工带来了很大的困难和挑战。

1.3 高地下水位

高地下水位是指地下水位接近或高于基坑开挖底面的情况。在高地下水位地区进行深基坑开挖时,地下水会对边坡产生较大的水压力,增加边坡的滑动力,降低边坡的稳定性。同时,地下水的渗流作用会导致土体的颗粒流失,引起土体的软化,进一步削弱边坡的强度。

另外,高地下水位还会增加基坑降水的难度和成本,如 果降水措施不当,可能会导致基坑周围地面沉降,影响 周边建筑物的安全。

2 复杂地质条件对深基坑岩土边坡稳定性的影响

2.1 地质结构因素

地质结构作为影响深基坑岩土边坡稳定性的关键要 素,起着举足轻重的作用。不同的地质结构形态,像断 层、褶皱、节理等,对边坡稳定性的影响各有差异。断 层犹如岩体中的一道"伤疤",它的出现无情地破坏了 岩体的连续性和完整性, 让原本紧密相连的岩体变得支 离破碎, 进而大幅降低岩体的强度。在这种情况下, 边 坡就如同失去了坚固支撑的斜坡,极易发生滑移和坍塌 事故。褶皱则会使岩层发生弯曲变形,在褶皱轴部,应 力会高度集中,就像一个压力聚集点,导致岩体破碎不 堪。这种破碎的岩体难以承受边坡的重量和外力,严重 影响边坡的稳定性。节理是岩体中常见的裂隙,其发育 程度和方向对岩体的力学性能影响重大。当节理的方向 与边坡的倾向一致时,就如同为边坡的滑移开辟了"通 道",会显著降低边坡的稳定性。例如在山区进行深基 坑工程时, 若遇到断层破碎带, 在基坑开挖过程中, 断 层破碎带中的岩体极易发生滑移, 进而导致边坡失稳, 给工程带来巨大隐患。

2.2 水文地质因素

水文地质条件对深基坑岩土边坡稳定性的影响不容小觑。地下水的存在就像一个"隐形杀手",会悄然改变土体的物理力学性质。它会增加土体的重量,让土体变得更加沉重,同时降低土体的抗剪强度,使土体更容易被破坏。地下水的渗流作用会产生动水压力,这种压力如同无形的力量,对边坡产生冲刷和侵蚀作用,不断削弱边坡的稳定性^[2]。地下水位的变化还会引起土体的有效应力变化,导致土体发生固结沉降。就像建筑物失

去稳定的地基一样,土体的沉降会直接影响边坡的稳定性。比如,在雨季进行深基坑工程时,地下水位迅速上升,土体的含水量大幅增加,抗剪强度急剧降低,边坡的稳定性会受到严重影响。若此时没有及时采取有效的排水措施,基坑边坡就如同坐在"定时炸弹"上,很容易发生滑坡事故,给工程造成严重损失。

2.3 地震作用因素

地震作为一种强烈的自然灾害,对深基坑岩土边坡稳定性的破坏力极大。地震发生时,产生的地震波如同汹涌的波涛,会使土体产生剧烈振动。这种振动会导致土体的抗剪强度大幅降低,同时增加边坡的滑动力,让边坡处于更加危险的状态。而且,地震还可能引发地下水位的变化,进一步加剧对边坡稳定性的影响。在地震烈度较高的地区,深基坑岩土边坡在地震的强大作用下,就像脆弱的小船在狂风巨浪中,容易发生大规模的滑坡和坍塌。这些灾害不仅会直接破坏深基坑工程的结构,还会给周边环境和人员安全带来严重威胁。例如,在汶川地震中,许多深基坑工程遭受了不同程度的破坏,基坑边坡出现了严重的滑移和坍塌现象,大量土石方堆积,堵塞了交通要道,给救援工作和后续的重建带来了极大的困难,凸显了地震作用对深基坑岩土边坡稳定性的巨大挑战。

3 复杂地质条件下深基坑岩土边坡稳定性分析方法

3.1 传统分析技术

在边坡稳定性分析领域, 传统分析技术凭借深厚的 历史积淀和广泛的实践应用,成为工程领域的重要基 石,主要包括极限平衡法和经验类比法。极限平衡法是 基于静力平衡原理构建的分析体系,以严谨的力学逻辑 为支撑。该方法将边坡岩土体细致划分为若干条块,对 每个条块所受的重力、土压力、水压力等进行精准剖 析,并据此建立平衡方程,通过求解方程得到边坡稳定 性系数,从而判断边坡的稳定状态。其中,瑞典条分法 作为经典方法,假定条块间无侧向力,计算相对简便, 适用于初步分析; 毕肖普法则考虑了条块间的侧向力, 计算结果更为精确,常用于精度要求较高的工程。两种 方法虽计算逻辑和适用场景存在差异, 但都为边坡稳定 性分析提供了可靠的量化依据。经验类比法则是工程实 践智慧的结晶,它以大量工程案例为参照,将当前工程 的地质条件、边坡形态、水文特征等关键要素,与历史 上类似工程进行系统对比。例如, 在某山区公路边坡建 设中,工程师参考以往相同岩性、坡度和降雨条件下的 边坡工程案例,成功预判并规避了潜在的滑坡风险。通 过借鉴类似工程的成败经验, 经验类比法能快速对边坡 稳定性做出评估。传统分析技术以计算流程简明、知识体系易于掌握的优势,在各类土木工程中得到广泛应用。但不可忽视的是,该技术存在明显局限性。由于其未充分考量土体应力应变的动态关系,无法准确模拟边坡从变形到失稳的全过程,在处理断层交错、岩性复杂多变的地质环境时,计算精度难以满足现代工程的高标准要求。

3.2 现代数值模拟技术

现代数值模拟技术在边坡稳定性分析中发挥着越来 越重要的作用,主要包括有限元法、有限差分法、离散 元法等。有限元法是一种先进且实用的分析方法,它 将连续的边坡岩土体离散化为有限个单元,每个单元都 具有特定的力学性质。通过对每个单元进行细致的力学 分析,综合考虑各种力的作用和边界条件,建立整体平 衡方程。然后运用数值计算方法求解这些方程,从而得 到边坡的应力应变分布和稳定性系数。有限差分法则是 将求解域划分为差分网格,用差分方程近似代替微分方 程,将连续的问题离散化。通过求解差分方程,能够得 到边坡在不同位置的应力应变和稳定性情况[3]。离散元法 把边坡岩土体看作是由许多离散的颗粒组成,着重研究 颗粒之间的相互作用,如接触力、摩擦力等,以此分析 边坡的变形和稳定性。现代数值模拟技术能够充分考虑 土体的非线性、各向异性等复杂特性,可以逼真地模拟 边坡的变形和破坏过程,对于复杂地质条件下的边坡稳 定性分析具有较高的精度和可靠性。不过,数值模拟技 术需要建立合理的计算模型,对计算参数的选取要求极 为严格, 计算过程也相对复杂, 需要专业的技术人员和 先进的计算设备支持。

3.3 综合分析方法

综合分析方法是一种创新且高效的边坡稳定性分析 手段,它将传统分析技术和现代数值模拟技术有机结 合,充分发挥各自的优势,以达到提高边坡稳定性分析 准确性和可靠性的目的。在实际应用中,可以先采用经 验类比法对边坡的稳定性进行初步评估。凭借丰富的工 程经验和类似工程的对比,快速对边坡的稳定状况有一 个大致的了解,为后续的分析提供方向和参考。然后利 用极限平衡法进行定量分析,通过精确的计算得出边坡 的稳定性系数,从数值上明确边坡的稳定程度。最后通 过数值模拟技术对边坡的变形和破坏过程进行模拟,直 观地展示边坡在不同条件下的变化情况,进一步验证前 面分析结果的合理性。综合分析方法能够综合考虑地质 结构、水文地质、地震作用等多种因素的影响,避免了 单一分析方法的局限性,更全面、准确地评估复杂地质 条件下深基坑岩土边坡的稳定性。因此在实际工程中, 综合分析方法具有广阔的应用前景,能够为工程的安全 建设提供有力的技术支持和保障。

4 提高深基坑岩土边坡稳定性的措施与建议

4.1 优化支护结构设计

支护结构作为保障深基坑岩土边坡稳定性的关键防 线, 其设计的合理性与有效性至关重要。在面对复杂地 质条件时,设计人员需深入调研现场地质情况,精准把 握地质特点,以此为依据谨慎选择合适的支护形式。排 桩支护凭借其施工便捷、适应性强的优势, 在多种地质 条件下均有应用; 地下连续墙支护则以整体性好、刚度 大的特点,适用于对变形控制要求严格的工程;土钉墙 支护具有经济、施工速度快等优点,常用于土质较好且 开挖深度不大的基坑。确定支护形式后, 合理确定支护 结构参数是核心环节。桩径、桩间距、墙厚等参数直接 影响支护结构的强度和刚度。若参数设计不合理,可能 导致支护结构无法承受边坡的土压力和水压力, 引发安 全事故。另外,采用组合支护形式能充分发挥不同支护 方式的优势, 实现优势互补。例如在软弱土层地区, 排 桩与锚索相结合的支护形式,排桩提供侧向支撑,锚索 通过施加预应力增强支护结构的稳定性, 二者协同作 用,有效提高边坡的稳定性,为深基坑工程的安全施工 提供坚实保障。

4.2 地基处理与加固措施

在复杂地质条件下,地基常面临承载力不足、稳定性差等严峻挑战,严重威胁工程安全与质量,因此采取有效的处理与加固措施刻不容缓。目前,常见的地基处理方法因各自独特的技术特点,在不同地质场景中发挥着关键作用。换填法凭借操作简便的优势,成为浅层软弱地基处理的常用手段。施工时,工程人员将软弱土层彻底挖除,随后换填级配良好的砂石、灰土等高强度材料。这些材料具有良好的透水性和较高的压缩模量,换填后能快速提升地基强度,增强其承载能力。强夯法借助重锤从数米甚至数十米高度自由落体产生的巨大冲击力,对地基进行强力夯实。通过调整重锤重量、落距等施工参数,可使地基土颗粒重新排列,显著增加密实度,有效提高承载能力,尤其适用于碎石土、砂土等地基。水泥搅拌桩法在软黏土地区应用广泛,其利用水泥作为固化剂,通过特制搅拌机械将水泥与软土强制搅

拌。在一系列物理化学反应作用下,软土硬结形成具有一定强度和整体性的桩体,与周围土体共同作用,大幅提高地基承载力。在岩溶地区,溶洞破坏岩体完整性,导致地基稳定性骤降。注浆加固法此时发挥关键作用,工程人员将水泥浆、化学浆液等注入溶洞,填充空间并胶结松散岩体。

4.3 施工过程中的监测与控制

深基坑施工过程中,边坡的稳定性受多种因素影响,实时监测和控制边坡稳定性是确保工程安全的重要举措。通过安装测斜仪、水位计、应力计等先进的监测设备,能够精准获取边坡的位移、地下水位、支护结构的应力等关键数据。测斜仪可实时监测边坡的倾斜变化,及时察觉边坡的微小位移;水位计能准确掌握地下水位的高低和变化情况;应力计则可测量支护结构所承受的应力大小^[4]。依据监测结果,施工人员能够及时了解边坡的变形动态,迅速调整施工方案和支护参数。例如,当监测发现边坡位移过大时,立即分析原因,采取增加支护结构的强度、加强降水等针对性措施,有效控制边坡的变形,防止边坡失稳事故的发生。通过实时监测与精准控制,为深基坑工程的安全施工提供动态保障,确保工程质量和人员安全。

结束语

复杂地质条件给深基坑岩土边坡稳定性带来诸多挑战,影响工程安全与质量。通过深入研究其类型、影响,运用多种分析方法,并采取优化支护、地基加固、实时监测等措施,可有效提升边坡稳定性。未来,随着技术发展,需不断探索创新,完善相关理论与技术,以更好地应对复杂地质条件,保障深基坑工程安全顺利推进,推动建筑行业稳健发展。

参考文献

[1]黄琳,舒睿.地铁荷载作用下基坑边坡稳定性综合分析实例研究[J].科学技术创新,2023,(09):192-195.

[2]乔晓延.地铁隧道明挖施工基坑支护稳定性分析[J]. 建筑机械,2023,(03):55-59.

[3]胡建伟.某基坑加深开挖支护体系加固结构数值模拟分析[J].土工基础,2024,38(06):931-937.

[4]刘捷,刘小军,王新,等.复杂地质条件对隧道施工的影响及数值模拟[J].交通节能与环保,2024,20(S2):127-133.