水利水电工程混凝土施工质量控制要点及技术应用

唐鑫 中国水电基础局有限公司 天津 300000

摘 要:水利水电工程混凝土施工质量直接关乎结构安全、运行效率及生态环保。其质量控制需涵盖原材料、配合比、浇筑及养护等环节,原材料需严格核查性能指标,配合比设计以强度、耐久性为核心,浇筑过程注重拌合、运输及振捣管理,养护则需控制温湿度。高性能混凝土、预拌混凝土、温控及喷射混凝土等技术的应用,可提升施工质量与效率,对保障工程寿命、降低成本及协调生态具有重要意义。

关键词:水利水电工程;混凝土施工;质量控制;技术应用

引言

水利水电工程作为重要基础设施,混凝土结构需承受多种复杂作用力与环境侵蚀,施工质量至关重要。当前,如何通过科学的质量控制及技术应用,确保混凝土结构具备足够强度、耐久性与稳定性,是工程建设的关键。本文围绕水利水电工程混凝土施工质量控制要点,分析原材料、配合比等环节的控制方法,并探讨相关技术的应用,为提升工程施工质量提供参考。

1 水利水电工程混凝土施工质量控制的重要性

水利水电工程作为国家重要的基础设施, 其混凝土 结构不仅要承受长期的水流冲击、渗透压力和温度应 力,还要抵御自然环境中侵蚀性介质的持续作用,因此 混凝土施工质量直接决定了工程的结构安全与使用寿 命。高质量的混凝土施工能确保坝体、隧洞、厂房等核 心建筑物具备足够的强度、整体性和耐久性, 有效避免 因材料性能不足或施工缺陷引发的裂缝、渗漏甚至结构 失稳等重大隐患,从而保障工程在设计使用年限内稳定 运行。混凝土施工质量控制对工程的运行效率和功能发 挥具有不可替代的作用,在水利水电工程中,混凝土结 构的平整度、尺寸精度和抗渗性能直接影响水流的过流 能力、闸门的启闭效果以及设备的安装精度, 若施工过 程中出现蜂窝麻面、错台偏差等质量问题,不仅会增加 后期维修加固的难度,还可能导致工程运行效率下降, 甚至影响防洪、发电、灌溉等核心功能的正常实现。有 效的混凝土质量控制能够显著降低工程全生命周期的成 本投入,通过严格把控原材料质量、配合比设计、浇筑 振捣、养护等关键环节,可减少因质量缺陷导致的返工 处理、结构补强等额外支出,同时高质量的混凝土结构 能降低长期维护费用,延长工程大修周期,从经济角度 实现资源的优化配置。在水利水电工程建设中, 混凝土 施工质量控制与生态环境保护存在密切关联,劣质混凝

土结构可能因渗漏引发周边土壤盐碱化、地下水污染等问题,而通过科学的质量控制措施,如采用低水化热水泥、优化温控工艺减少裂缝产生,可降低工程对周边生态环境的扰动,实现工程建设与生态保护的协调统一。

2 水利水电工程混凝土施工质量控制要点

2.1 原材料质量控制

水泥作为混凝土胶凝材料的核心, 需严格核查其强 度等级、安定性及水化热指标,同一工程应优先选用同 一厂家、同一批次产品以减少性能波动, 进场时需按 规定批次进行抽样送检,确保各项指标符合设计要求。 砂石骨料的级配、含泥量、针片状颗粒含量直接影响混 凝土的和易性与强度,天然砂应控制氯离子和硫化物含 量,人工骨料需检测石粉含量及压碎值,骨料堆放应设 置隔离措施防止混料,使用前需测定含水率并据此调整 施工配合比。外加剂的选择应根据混凝土性能需求确 定,减水剂需验证其减水率及与水泥的适应性,缓凝 剂、引气剂等功能型外加剂应通过试验确定最佳掺量, 进场时需检查产品合格证及出厂检验报告,并进行匀质 性检验。拌合用水需符合相关标准,避免使用含有害物 质的工业废水或生活污水, 当采用地下水或地表水时, 需检测pH值、硫酸盐含量及氯化物含量,确保不对混凝 土强度发展及钢筋锈蚀产生不利影响[1]。

2.2 混凝土配合比控制

混凝土配合比设计需以设计强度、耐久性、和易性 为核心指标,通过试配确定水胶比、砂率及各材料用 量,试配过程中应采用实际工程使用的原材料,模拟施 工环境条件进行拌制,确保配合比具有实际可操作性。 水胶比是影响混凝土强度和耐久性的关键参数,需根据 结构设计要求及所处环境类别确定,对于抗渗、抗冻要 求较高的部位,应严格控制水胶比上限,必要时通过掺 加矿物掺合料如粉煤灰、矿渣粉等优化胶凝材料体系。 砂率的选择需兼顾混凝土的流动性与粘聚性,砂率过高会增加拌合用水量,过低则易导致离析,应通过试验确定最优砂率,使混凝土在满足施工浇筑要求的同时,减少浆体用量以降低水化热。掺合料的掺量应根据其活性指数及混凝土性能要求确定,粉煤灰的掺量需考虑对早期强度的影响,矿渣粉应控制其烧失量,掺合料与水泥的比例需通过正交试验验证,确保混凝土在不同龄期的强度及耐久性指标达标,施工过程中若原材料性能发生变化,应及时重新调整配合比。

2.3 混凝土浇筑过程控制

混凝土拌合需保证计量精度,各种材料的称量偏差 应控制在规范允许范围内, 拌合时间需根据搅拌机类型 及混凝土坍落度确定,确保拌合物均匀一致,出机前需 检测坍落度及含气量,不符合要求的混凝土不得入仓。 运输过程中应采取措施防止混凝土离析、初凝及温度损 失,长距离运输时需使用搅拌运输车,保持罐体缓慢转 动, 卸料前应快速旋转罐体使混凝土重新拌匀, 入仓时 的自由下落高度不宜超过2m,超过时应设置溜管或串 筒避免骨料分离。浇筑前需检查模板支撑的牢固性、钢 筋保护层厚度及预埋件位置,清理仓内杂物及积水,对 于岩基或老混凝土面,需进行凿毛处理并冲洗干净,涂 刷界面剂以增强粘结力。混凝土振捣应采用插入式振捣 器,振捣棒的移动间距不应超过其作用半径的1.5倍,振 捣时间以混凝土表面出现浮浆、不再下沉为准,避免漏 振或过振,对于钢筋密集部位应选用小直径振捣棒,确 保振捣密实,浇筑过程中需分层进行,每层厚度根据振 捣器长度及混凝土坍落度确定,上层浇筑应在下层混凝 土初凝前完成,形成良好的施工缝结合。

2.4 混凝土养护控制

混凝土养护的核心是保持适当的湿度和温度,确保水泥水化反应充分进行,浇筑完成后应在初凝后及时覆盖保湿材料,对于暴露表面可采用塑料薄膜覆盖或洒水养护,保持表面持续湿润,养护时间根据水泥品种及结构类型确定,普通硅酸盐水泥混凝土不应少于14天,掺加矿物掺合料的混凝土应适当延长。高温季节养护需采取遮阳措施,避免表面温度骤升导致裂缝,可采用喷雾养护降低表面温度,同时防止水分过快蒸发,低温季节则需采取保温措施,当环境温度低于5℃时,应采用冬季养护工艺,如覆盖保温被或通人蒸汽加热,确保混凝土强度在正温环境下增长。对于大体积混凝土,养护期间需监测内部温度,控制内外温差不超过25℃,通过预埋冷却水管循环通水降低内部温度,同时结合表面保温减少温度梯度,避免产生温度裂缝,养护过程中应定期检

查混凝土表面湿度,及时补充水分,防止因干燥产生表面收缩裂缝。对于有抗渗要求的混凝土结构,养护期间需确保表面始终处于湿润状态,避免因早期脱水影响抗渗性能的形成,养护结束后应检查混凝土表面是否存在裂缝、起砂等缺陷,及时采取修补措施^[2]。

3 水利水电工程混凝土施工技术应用分析

3.1 高性能混凝土技术

(1)高性能混凝土以高强度、高耐久性、高工作性 为核心特征,通过优化胶凝材料体系实现性能突破,通 常采用低水胶比配合矿物掺合料, 如超细粉煤灰、硅灰 等,形成致密的微观结构以抵御水流冲刷、化学侵蚀等 恶劣环境作用, 在水利水电工程的泄洪道、闸室等受冲 击部位应用广泛,能显著提升结构的抗磨蚀能力和使用 寿命。(2)其工作性优化通过高效减水剂调节,在低 用水量下仍能保持良好的流动性和粘聚性,满足复杂结 构体型的浇筑需求, 尤其适用于钢筋密集区域或薄壁构 件,可减少振捣难度并降低蜂窝麻面等缺陷发生率,同 时通过引入适量引气剂改善抗冻性,适应寒冷地区水利 工程的季节性冻融循环环境。(3)高性能混凝土的应用 需结合工程所处环境类别进行针对性设计,对于海水侵 蚀区域需控制氯离子渗透系数,对于高水压部位需提升 抗渗等级至P8以上,施工中需严格控制入模温度和浇筑 间歇时间,避免因内外温差过大产生温度裂缝,通过早 期强度监测确保其力学性能与设计预期一致。

3.2 预拌混凝土技术

(1)预拌混凝土在专业搅拌站集中生产,通过自动 化计量系统实现原材料配比的精准控制, 避免现场拌合的 人为误差, 其生产过程可通过计算机系统实时监控, 对砂 含水率、外加剂掺量等参数进行动态调整, 保证混凝土性 能的稳定性,尤其适用于工程量大、强度等级多变的水利 水电工程,能实现不同施工部位的材料精准供应。(2) 运输环节采用带搅拌功能的专用罐车,能很好地保持混凝 土在运输过程中的匀质性。运输途中,会结合运输距离长 短、环境温度高低, 合理调整罐车转速。夏季高温时, 在 罐体外精心包裹隔热层,减少热量传导;冬季则用保温棉 等做好包裹,防止冻害。卸料前快速旋转罐体,恢复混凝 土流动性,确保入仓时的工作性符合浇筑要求。(3)预 拌混凝土的应用需建立完善的供应协调机制, 根据施工 进度制定详细的供应计划,结合仓面浇筑强度确定运输 车辆数量,避免出现断料或积压现象,同时搅拌站需与 施工现场保持实时沟通,根据浇筑反馈调整混凝土坍落 度,针对大体积浇筑部位可专门生产低水化热型预拌混 凝土,配合温控措施控制内部温升[3]。

3.3 混凝土温控技术

(1)混凝土温控技术通过控制浇筑温度、降低水化 热峰值、减小内外温差三重手段预防温度裂缝。在原材 料处理阶段就精心布局,采用预冷措施,针对砂石骨料 分别实施风冷、水冷或者液氮降温等不同方式,精准地 将拌合料温度控制在设计范围。夏季施工时,还会搭配 冰水拌合, 多管齐下进一步降低混凝土出机温度, 从源 头减少温度应力产生的基础。(2)对于大体积混凝土 结构, 预埋冷却水管系统是核心温控手段, 通过循环通 水带走内部热量,水管布置采用分层交错方式确保冷却 均匀,通水过程中实时监测进出水温度和混凝土内部温 度,根据温差数据调整通水流量和时长,当内外温差接 近25℃阈值时加大冷却强度,避免温度应力超过混凝土 早期抗拉强度。(3)表面保温养护是温控技术的重要 补充,采用保温被、聚乙烯泡沫板等材料覆盖混凝土表 面,减少环境温度波动对表层的影响,冬季施工时结合 电热毯或蒸汽养护提升表面温度,形成由内向外的温度 梯度缓冲带,同时通过布置温度监测点构建三维温控网 络,实现坝体、闸墩等关键部位的温度变化全过程追 踪,为温控措施调整提供数据支撑。

3.4 喷射混凝土技术

(1)喷射混凝土通过压缩空气将拌合料高速喷射至 受喷面形成结构层,无需模板支撑即可实现快速成型, 在水利工程的隧洞开挖、边坡支护等临时或永久结构中 应用广泛,其施工过程可通过调整喷射角度和距离控制 混凝土的密实度,对于岩面裂隙部位能实现较好的填充 效果,增强结构的整体性和抗渗性。(2)材料配合比 需满足喷射工艺特性,采用较高的水泥用量和砂率保证 喷射后的粘聚性,掺加速凝剂缩短凝结时间,使混凝土 在喷射后数分钟内初凝,避免坠落现象,速凝剂掺量需通过试验确定,在保证早期强度的同时避免后期强度损失,对于有抗渗要求的部位可掺加防水剂,形成兼具强度和止水功能的复合结构层。(3)喷射施工需控制风压、喷射厚度和回弹率,风压根据喷嘴距离和拌合料稠度调整,通常保持在0.2-0.4MPa范围,分层喷射时每层厚度不超过10cm,后一层喷射在前一层初凝后进行,通过专用设备清除喷射过程中产生的回弹料,避免其重新掺入拌合料影响质量,施工后需对喷射面进行养护,采用喷水或覆盖保湿的方式促进强度发展,对于平整度不足的部位进行补喷处理以满足设计要求[4]。

结语

综上所述,水利水电工程混凝土施工质量控制涉及 多个关键环节,原材料、配合比、浇筑及养护的严格把 控是基础。高性能混凝土等技术的应用,进一步为施工 质量与效率提供了保障。做好这些工作,不仅能确保工 程结构安全稳定、提升运行效率、降低成本,还能减少 对生态环境的影响。未来,需持续优化质量控制措施与 技术,推动水利水电工程建设更可持续发展。

参考文献

- [1]郑方方,王欣晨.水利水电工程混凝土施工技术及质量控制措施[J].建筑工程技术与设计,2020(19):2850.
- [2]钟翔.水利水电工程中混凝土施工技术与质量控制要点探析[J].电脑应用文粹,2024(10):325-327.
- [3]陈华丹.浅析水利水电工程混凝土施工技术应用[J]. 建筑工程技术与设计,2020(17):2660-2661.
- [4] 匡雄伟.水利水电工程中混凝土施工技术的应用[J]. 清洗世界,2021,37(7):155-156.