光伏电站电器布置优化策略对发电效率的影响研究

张正满 马毅乐 宋治钢 西北水利水电工程有限责任公司 陕西 西安 710100

摘 要:本文聚焦光伏电站电器布置优化策略对发电效率的影响。先阐述光伏电站工作原理及影响发电效率的内外因素,接着分析传统电器布置方式,包括常见设备及布置模式。随后提出优化策略,涵盖组件布局、电气连接、设备选型、散热与防护等方面。通过某平地光伏电站改造案例,对比改造前后发电效率等数据,表明优化策略能显著提升发电效率、降低故障率与维护成本,为光伏电站优化提供参考,助力提高光伏发电效益。

关键词:光伏电站;电器布置优化;对发电效率的影响

1 光伏电站发电效率相关理论基础

1.1 光伏电站工作原理

光伏电站的核心工作原理是基于半导体的光伏效应,当太阳光照射到光伏组件中的半导体材料(通常为硅)时,光子的能量被半导体吸收,使电子从束缚态激发出来,形成自由电子和空穴。在半导体内部的PN结电场作用下,自由电子和空穴发生分离,分别向不同的方向移动,从而在光伏组件的两端产生电动势。多个光伏组件通过串联和并联的方式组成光伏阵列,将产生的直流电汇集起来。随后,直流电通过逆变器转换为符合电网标准的交流电,以便接入电网进行传输和使用。在整个过程中,还需要汇流箱、配电柜等电器设备对电流进行汇流、分配、保护等处理,确保电力的稳定输出。光伏电站的工作效率取决于光伏组件的光电转换效率、电器设备的能量转换与传输效率以及整个系统的协同运行状况。

1.2 影响发电效率的主要因素

影响光伏电站发电效率的因素分内在与外在两类,内在因素主要和光伏组件及电器设备性能有关。光伏组件转换效率是关键,不同类型有差异:单晶硅转换效率高但成本高;多晶硅转换效率略低、成本适中;薄膜光伏组件转换效率低,不过柔性好、弱光性能佳。而且,光伏组件有温度系数,温度升高,转换效率会下降。逆变器是将直流电转交流电的核心设备,其转换效率直接影响整体发电效率,受负载率、工作温度等因素影响,高效逆变器能在不同工况保持较高能量转换水平。电缆等电气连接部件的电阻会造成线损,其规格、材质、长度及连接方式影响线损大小,线损越大,发电效率越低^[1]。外在因素中,光照强度影响大,在一定范围内,光照越强,发电效率越高,但超过限度会因温度升高使组件效率下降。温度对发电效率影响不可忽视,环境温度升高,光伏组件半

导体材料性能改变,载流子浓度和迁移率下降,转换效率降低,温度每升高 1℃,单晶硅光伏组件转换效率约下降 0.4% - 0.5%。阴影遮挡是重要外在因素,部分组件被遮挡,输出电流大幅下降,影响组串输出功率,产生"热斑效应",降低发电效率还可能损坏组件。灰尘、雨水、积雪覆盖组件表面,会减少到达电池表面的光照强度,降低效率。此外,大气质量、地理位置、季节变化、昼夜交替等也会通过影响光照条件,间接影响发电效率。

2 光伏电站电器布置现状分析

2.1 常见电器设备介绍

光伏电站中的常见电器设备种类繁多,各自承担着 不同的功能, 共同保障电站的稳定运行。光伏组件是光 伏电站的核心发电设备,由多个光伏电池片通过串联、 并联及封装而成,其主要作用是将太阳光能转换为直流 电。根据材料不同,常见的有单晶硅光伏组件、多晶硅 光伏组件和薄膜光伏组件等; 逆变器是实现电能转换的 关键设备, 能将光伏组件产生的直流电转换为交流电, 并保证输出的交流电符合电网的频率、电压等标准。按 照应用场景和功率大小,可分为集中式逆变器、组串式 逆变器和微型逆变器等。汇流箱用于将多个光伏组串产 生的直流电汇集起来,然后输送给逆变器。它通常具有 过流保护、防雷等功能,能提高光伏阵列的可靠性和安 全性。汇流箱分为直流汇流箱和交流汇流箱,在光伏电 站中以直流汇流箱为主;配电柜主要用于对电能进行分 配、控制和保护。它可以将逆变器输出的交流电分配到 不同的负载或电网中,同时具备过载、短路、漏电等保 护功能,确保电气系统的安全运行[2]。另外,还有支架 系统,用于支撑光伏组件,使其能够以最佳角度接收太 阳光;防雷接地设备,用于防止雷击对电器设备造成损 坏; 监控系统, 用于实时监测光伏电站的运行状态、发

电数据等,以便及时发现和处理问题。

2.2 传统电器布置方式

传统的光伏电站电器布置方式在长期的发展过程中 形成了一定的模式。在组件布置方面,通常采用行列式 排列,光伏组件按照一定的间距和倾斜角度安装在支架 上。对于平地光伏电站,组件多以固定的倾斜角度整齐 排列,朝向多为正南方向,以最大限度地接收太阳光。 在山地等复杂地形,可能会根据地形走势进行一定的调 整,但整体仍以规则排列为主。电气连接方面,多个光 伏组件串联形成光伏组串,多个组串再并联接入汇流 箱,汇流箱将电流汇集后接入逆变器,逆变器输出的交 流电经配电柜接入电网。电缆的铺设多采用直埋或架空 的方式,在组件与汇流箱、汇流箱与逆变器、逆变器与 配电柜之间形成连接线路;设备安装位置上,逆变器、 汇流箱、配电柜等通常集中安装在专门的设备区或机房 内,便于管理和维护。支架系统多为固定支架,光伏组 件的角度在安装完成后一般不再调整。

3 光伏电站电器布置优化策略

3.1 组件布局优化

组件布局优化是提高光伏电站发电效率的重要环 节,主要包括基于地形和光照的组件排列方式以及组件 间距的科学计算。基于地形和光照的组件排列方式需要 充分考虑不同地形的特点和光照分布情况。对于平地光 伏电站,可以采用跟踪式支架系统,使光伏组件能够随 着太阳的运动而转动,始终保持与太阳光垂直,从而提 高光照接收量。在山地光伏电站,应根据等高线进行组 件排列,避免因地形起伏导致的组件相互遮挡。同时, 结合当地的太阳轨迹数据,确定组件的最佳朝向和倾斜 角度,对于东西走向的山坡,可适当调整组件朝向,以 适应地形的光照条件。在屋顶光伏电站中,需要根据屋 顶的形状、面积和承重能力,合理规划组件的排列方 式, 充分利用屋顶空间, 同时避免屋顶其他设施对组件 的遮挡。组件间距的科学计算需要综合考虑太阳高度 角、组件高度和当地的地理纬度等因素。在确定组件间 距时,要确保在一年中太阳高度角最小的时段(如冬至 日),前排组件不会对后排组件造成遮挡。计算公式通 常为: 间距 = 组件高度×cot (太阳高度角)×(1+安全系 数)。安全系数的取值一般为0.1-0.2,以应对可能的误 差和地形变化[3]。通过科学计算组件间距,可以在保证不 遮挡的前提下,最大限度地提高土地或空间的利用率, 增加光伏组件的安装数量,从而提高整体发电效率。

3.2 电气连接优化

电气连接优化主要包括合理选择电缆规格和材质以

及优化电气连接方式,以减少线损,提高电能传输效 率。合理选择电缆规格和材质需要考虑电流大小、传输 距离和环境温度等因素。电缆的截面积应根据通过的最 大电流进行选择,截面积过小会导致电阻增大,线损增 加;截面积过大则会增加成本和安装难度。在材质方 面,铜缆的导电性能优于铝缆,电阻较小,线损较低, 但成本较高;铝缆成本较低,但导电性能稍差,且需要 采取防腐措施。对于传输距离较长的线路,应优先选择 铜缆或较大截面积的铝缆,以降低线损。同时,电缆的 绝缘性能和耐温性能也应符合使用环境的要求,确保安 全可靠运行; 优化电气连接方式可以采用组串式逆变器 与光伏组串——对应的连接方式,减少集中式逆变器带 来的组串间电流不匹配问题。这种方式能够使每个组串 独立工作, 当某个组串出现故障或被遮挡时, 对其他组 串的影响较小,提高了系统的发电效率和可靠性。此 外,采用分布式汇流方式,将汇流箱分散安装在光伏阵 列附近,缩短电缆长度,也可以减少线损。在连接过程 中,要确保接头牢固、接触良好,避免因接触电阻过大 而增加线损。同时, 合理规划电缆路径, 减少弯曲和交 叉,降低电缆的阻抗。

3.3 设备选型优化

设备选型优化对于提高光伏电站的发电效率至 关重要,包括高效光伏组件的选择和适配逆变器的 选用。高效光伏组件的选择应综合考虑转换效率、 可靠性、成本等因素。单晶硅光伏组件转换效率较 高,在相同的光照条件下能够产生更多的电能,适 用于对发电效率要求较高的场景。近年来, PERC (PassivatedEmitterandRearCell) 单晶硅组件、N型单晶 硅组件等高效产品不断涌现, 其转换效率相比传统组件 有了显著提升。在选择时,应根据光伏电站的建设成本 和预期收益,选择性价比高的高效组件。同时,要考虑 组件的温度系数、弱光性能等指标,确保在不同环境条 件下都能保持较好的发电性能;适配逆变器的选用需要 与光伏组件的功率和数量相匹配。逆变器的容量应略大 于光伏组串的最大输出功率,以避免逆变器过载。组串 式逆变器具有MPPT(最大功率点跟踪)跟踪精度高、对 组串差异适应性强等优点,适用于组件数量较多、光照 条件差异较大的场景。集中式逆变器则适用于大型光伏 电站,具有成本低、维护方便等特点。此外,逆变器的 转换效率是关键指标,应选择转换效率高、特别是在低 负载情况下效率较高的逆变器,以提高光伏电站的整体 发电效率。

3.4 散热与防护优化

散热与防护优化能够保障电器设备的稳定运行,提 高其使用寿命和发电效率,主要包括改善设备散热条件 和加强电气防护措施。改善设备散热条件对于逆变器、 汇流箱等设备尤为重要。这些设备在运行过程中会产生 大量的热量,若散热不良,会导致设备温度升高,转换 效率下降, 甚至引发故障。可以采用自然散热和强制散 热相结合的方式,对于大功率设备,可安装散热风扇、 散热片等装置,增强散热效果。设备的安装位置应选择 通风良好、温度较低的地方,避免阳光直射。在设备布 局时,要保证设备之间有足够的间距,便于空气流通。 此外,还可以通过优化设备内部结构,减少热量积聚, 提高散热效率;加强电气防护措施可以有效减少外部因 素对电器设备的损害。防雷措施是必不可少的, 光伏电 站应安装避雷针、避雷器等设备, 防止雷击损坏光伏组 件、逆变器等设备。同时,要做好接地系统,确保雷电 流能够顺利泄入大地。防水防潮措施也很重要,设备的 外壳应具有良好的密封性能, 防止雨水、潮气进入设备 内部,影响电气性能。在潮湿环境中,还可以在设备内 部安装除湿装置。防尘措施方面,应定期对设备进行清 洁, 防止灰尘堆积影响散热和设备性能。另外, 还要采 取防腐蚀措施,对于安装在沿海、工业区等腐蚀性较强 环境中的设备,应选择耐腐蚀材料或进行防腐处理。

4 优化策略对发电效率影响的案例分析

某平地光伏电站建成于5年前,采用传统的电器布置方式。在组件布局上,采用固定支架,组件倾斜角度为30°,朝向正南,组件间距按照经验值设置为3米。电气连接采用集中式逆变器,多个组串并联接入汇流箱后再接入逆变器,电缆采用铝缆,部分线路路径较长。设备安装在露天场地,无专门的散热措施。改造前,该电站存在以下问题:在冬季和夏季,由于太阳高度角变化较大,组件之间存在一定的遮挡现象;电缆线损较大,经测量约为3.5%;逆变器在夏季高温时运行温度达到50℃以上,转换效率下降明显;整体发电效率低于行业平均水平[4]。

针对这些问题,采取了以下优化策略: (1)组件布局优化。将固定支架更换为跟踪式支架,使光伏组件能

够跟随太阳运动调整角度;根据当地太阳高度角数据, 重新计算组件间距,将间距调整为4米,避免了组件之间 的相互遮挡; (2) 电气连接优化。将集中式逆变器更换 为组串式逆变器,实现每个组串独立逆变;将部分长距 离电缆更换为铜缆,并优化电缆路径,缩短电缆长度; (3)设备选型优化。更换部分老化的光伏组件,选用转 换效率更高的PERC单晶硅组件;选用转换效率在98%以 上的组串式逆变器; (4) 散热与防护优化。为逆变器安 装散热风扇和遮阳棚,改善散热条件;对设备进行全面 的防雷、防水、防尘检查和维护, 更换损坏的避雷器和 密封件; (5) 优化改造后, 经过半年的运行监测, 该电 站的发电效率得到了显著提升。与改造前同期相比, 月 均发电量增加12%。其中,跟踪式支架使组件的光照接收 量增加8%左右;线损降低至1.8%;逆变器运行温度控制 在40℃以下,转换效率提高1.5%;高效光伏组件也贡献 了一定的发电量增长。同时,设备的故障率明显降低, 维护成本有所减少。

结束语

光伏电站电器布置优化对提升发电效率意义重大。 通过合理优化组件布局、电气连接、设备选型以及做好 散热与防护等工作,能有效解决传统布置方式存在的 问题,显著提高电站发电效率,降低设备故障率与维护 成本。未来,随着光伏技术的不断发展,应持续探索更 科学、高效的电器布置优化策略,推动光伏电站向智能 化、高效化方向发展,进一步提高光伏能源在能源结构 中的占比,为实现能源可持续发展贡献力量。

参考文献

[1]吴程.关于新能源光伏发电技术的一些探讨思考[J]. 新能源科技,2022(6): 25-27.

[2]张琳,吕翔,刘旸.集中式光伏电站发电效率提升策略分析[J].电站系统工程,2022,38(01):71-72.

[3]李富春,田旭,党楠,刘飞,杨晓妮,刘联涛.光伏发电与塔式太阳能热发电联合电站配置特性研究[J].太阳能学报,2025,46(02):457-463.

[4]王伟,张鹏,李志强.光伏电站布局优化研究综述[J]. 太阳能学报。2023.44(3):12-19.