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基于Q-Learning算法的输电线路自适应巡检路径规划

刘Ǔ辉
国网绍兴供电公司Ǔ浙江Ǔ绍兴Ǔ312000

摘Ȟ要：输电线路作为电力系统的“神经脉络”，其巡检效率直接影响电网安全运行。传统路径规划方法依赖静

态地图与预设规则，难以应对复杂地形、动态障碍物及多目标优化需求。Q-Learning算法通过强化学习机制，使巡检
机器人能够在未知环境中自主探索最优路径，实现动态环境下的自适应决策。本文从算法原理、环境建模、奖励机制

设计、多目标优化及工程应用五个维度，系统论证Q-Learning在输电线路巡检中的技术优势与实践价值，结合变电站
巡检机器人、无人机协同巡检等典型案例，揭示其在提升巡检效率、降低运维成本方面的突破性进展。
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1��引言：输电线路巡检的智能化转型挑战

输电线路巡检是保障电网安全的核心环节，其核心

任务是通过定期检测杆塔、导线、绝缘子等设备状态，

及时发现并处理缺陷隐患。传统巡检方式存在三大痛

点：（1）环境适应性差：山区、跨河等复杂地形导致
人工巡检效率低下，无人机巡检易受强风、电磁干扰影

响；（2）动态响应滞后：突发障碍物（如树木倒伏、
施工机械入侵）需人工重新规划路径，延误缺陷处理时

机；（3）多目标冲突：需同时优化路径长度、能耗、安
全性等指标，传统算法难以实现动态权衡。以国家电网

2024年巡检数据为例，其管辖的110kV及以上线路总长超
120万公里，采用传统A*算法规划路径时，动态障碍物导
致重新规划频率高达37%，年均巡检成本增加21亿元。在
此背景下，基于Q-Learning的自适应路径规划技术成为破
解巡检效率瓶颈的关键。

2 Q-Learning 算法原理与巡检场景适配性分析

2.1  算法核心机制
Q-Learning通过构建状态-动作价值函数（Q表）实现

自主决策，其核心公式为：

其中：

s为当前状态（如巡检机器人位置、障碍物分布）；
a为执行动作（如前进、转向）；
r为即时奖励（如到达目标点 + 1 0，碰撞障碍

物-20）；
α为学习率（控制更新幅度）；
γ为折扣因子（平衡即时与未来奖励）。
该算法无需预先建模环境动态，通过“试错-反馈”

机制逐步收敛至最优策略，特别适合处理输电线路巡检

中的不确定性问题[1]。

2.2  巡检场景的马尔可夫决策过程（MDP）建模
将巡检任务抽象为MDP模型需定义四要素：
状态空间：采用栅格化地图表示，每个栅格包含地

形类型（平地/山地/水域）、障碍物状态（静态/动态）、
设备健康度（正常/缺陷）等信息；
动作空间：定义8方向移动（含对角线）及悬停检测

动作，动作执行成功率受地形坡度、风速影响；

奖励函数：设计多维度奖励机制（表1），例如：基
础奖励：每步移动消耗-1分；
目标奖励：到达杆塔点+50分；安全奖励：避开动态

障碍物+20分；效率奖励：路径长度优于历史最优时额外
奖励。

表1��多维度奖励机制

奖励类型 触发条件 奖励值

目标达成 到达指定杆塔 +50
安全避障 成功避开动态障碍物 +20
路径优化 新路径比历史最优短10% +30
碰撞惩罚 与障碍物发生碰撞 -50
能耗惩罚 单次巡检电量耗尽 -100

状态转移概率：考虑风速、设备故障率等随机因

素，例如：强风天气下转向动作成功率降至70%；老化绝
缘子检测到缺陷的概率为15%。

2.3  算法优势对比
与传统路径规划方法相比，Q-Learning在巡检场景中

具有显著优势（表2）：
3��输电线路巡检环境建模关键技术

3.1  三维栅格地图构建
采用激光雷达与视觉融合技术生成高精度点云数

据，通过体素化下采样将环境划分为0.5m×0.5m×0.5m的



2026� 第5卷� 第1期·现代工程项目管理

140

栅格单元。每个栅格赋予以下属性：

通行成本：平地 = 1，山地 = 3，水域�=�∞；
障碍物类型：静态（树木/建筑）、动态（车辆/无

人机）；

设备状态：正常（绿色）、缺陷（红色）、待检

（黄色）。

表2��与传统路径规划方法相比

算法类型 环境适应性 动态响应 多目标优化 计算复杂度

Dijkstra 静态环境优 需重新建模 难以实现 O(n²)
A* 静态环境优 需重新建模 需手动调参 O(nlogn)

Q-Learning 动态环境优 实时响应 自动权衡 O(n)

3.2  动态障碍物预测模型
针对施工机械、鸟类活动等动态障碍物，构建LSTM

神经网络预测模型：

输入层：障碍物历史位置（x，y，z）、速度、加
速度；

隐藏层：2层LSTM单元（每层64个神经元）；
输出层：未来5秒位置预测及置信度[2]。

3.3  多传感器融合状态估计
采用扩展卡尔曼滤波（EKF）融合IMU、GPS、激光

雷达数据，解决单一传感器在复杂环境中的失效问题：

GPS信号遮挡区：通过IMU航位推算补偿位置误差；
强电磁干扰区：激光雷达点云匹配实现精确定位；

动态障碍物检测：毫米波雷达与视觉传感器数据融

合提升检测灵敏度。

4��Q-Learning 算法在巡检路径规划中的创新应用

4.1  改进型Q-Learning算法设计
针对传统Q-Learning收敛慢、探索效率低的问题，提

出以下改进策略：

经验回放机制：构建优先级经验池，存储高奖励转

移样本，训练时按TD误差大小采样，使学习效率提升
40%；
双Q网络架构：采用目标网络与评估网络分离设计，

减少Q值高估偏差，路径最优性提高25%；
动态探索率调整：引入Sigmoid函数控制ε值衰减：

其中k控制衰减速度，t0为半衰期，实现早期充分探
索、后期稳定利用。

4.2  多目标优化奖励函数设计
将路径长度、能耗、安全性等指标转化为统一奖励

函数：

其中：

L为路径长度（归一化）；
E为能耗（归一化）；

S为安全性评分（0-1区间）；
wi为动态权重，通过分析历史巡检数据确定：
山区线路：w1 = 0.4，w2 = 0.3，w3 = 0.3；
平原线路：w1 = 0.5，w2 = 0.2，w3 = 0.3。
4.3  无人机-机器人协同巡检模式
构建分层路径规划架构：（1）全局层：无人机利用

改进A*算法规划宏观巡检路线，覆盖500m半径区域；
（2）局部层：巡检机器人采用Q-Learning算法规划杆塔
间精细路径，实时避让动态障碍物；（3）通信层：通过
5G网络实现状态同步，无人机每10秒向机器人发送障碍
物预测信息[3]。

5� �案例分析——以国网山东电力1000千伏泉乐 ⅠⅡ线
巡检为例

5.1  项目背景与挑战
国网山东电力超高压公司管辖的1000千伏泉乐ⅠⅡ线

全长236.594公里，跨越黄河，沿途塔位多位于山区、丘
陵等地理条件复杂地带。其中，23–24号塔是山东境内
最高的两座塔，分别位于黄河两岸，塔基相距1315米，
横跨黄河的导线受微风振动影响，易出现导线断股、散

股、弧垂不符合标准、悬挂异物等安全隐患。传统无人

机巡检存在以下问题：一是精细化巡检能力不足：无法

识别导线断股、散股等微小缺陷；二是效率与成本矛

盾：激光雷达扫描虽能获取点云数据，但耗时长、费用

高，难以大规模推广；三是动态环境适应性差：山区、

丘陵地带地形复杂，传统路径规划算法难以应对突发障

碍物（如鸟类筑巢、树木倒伏）。

5.2  Q-Learning算法核心设计
为解决上述问题，项目团队采用Q-Learning算法构建

自适应巡检路径规划系统，关键设计如下：

5.2.1  状态空间建模
离散化网格地图：将输电线路走廊划分为10m×10m

的网格，每个网格单元对应一个状态（s），包含以下属
性：地理坐标（经度、纬度、高度）；障碍物类型（导

线、塔基、树木、鸟类等）；导线状态（正常、断股、

散股、异物悬挂）；巡检优先级（根据设备历史故障率
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动态调整）。

状态编码：采用独热编码（One-HotEncoding）将状
态转换为向量形式，例如：s = [0,0,1,0,...,0]#长度为网格
总数，仅当前位置为1

5.2.2  动作空间设计
基本动作集：定义无人机在每个状态下的可选动作

（a）：向上/向下/向左/向右移动10m；沿导线方向前进/
后退20m；悬停检测（针对高优先级区域）。
动态动作扩展：根据环境感知数据（如激光雷达、

双目视觉）动态调整动作集，例如：检测到前方50m有树
木倒伏时，增加“绕行左/右”动作；导线弧垂超标时，
触发“低空悬停检测”动作。

5.2.3  奖励函数设计
奖励函数是引导Q-Learning收敛的关键，设计如下：
基础奖励：到达目标点（如下一基塔）：+100；

移动到高优先级区域：+20；普通移动：+1；碰撞障碍
物：-50；超出最大步数（如500步）：-100。
精细化巡检奖励：检测到导线断股/散股：+150（鼓

励重点区域巡检）；发现异物悬挂：+100；弧垂测量误
差 < 5%：+50。
效率惩罚：重复访问同一状态：-10（避免路径冗

余）；悬停时间过长（> 30秒）：-5（平衡检测精度与
效率）。

5.2.4  Q-Learning算法实现
初始化：创建Q表（Q(s,a)），初始值为0，维度为

（状态数×动作数）；
参数设置：学习率（α）：0.1（初期快速学习，后期

稳定收敛）；折扣因子（γ）：0.9（重视长期奖励）；探
索率（ε）：0.3（初期30%概率随机探索，后期逐步降至
0.1）。
训练流程：①从起点（如23号塔）开始，根据ε -

贪婪策略选择动作；②执行动作后，通过激光雷达和

双目视觉获取新状态（s'）和奖励（r）；③更新Q表：
Q(s,a)←Q(s,a)+α[r+γmaxQ(s',a')-Q(s,a)]④重复步骤①–③，
直至到达终点（24号塔）或达到最大步数。

5.3  案例实施与效果
5.3.1  硬件部署
（1）无人机平台：搭载单线激光雷达（测量频

率10Hz@10m）、双目视觉模块（分辨率1080P）、
RTK定位系统（精度±2cm）；（2）边缘计算单元：
NVIDIAJetsonAGXXavier（算力32TOPS），实时运行
Q-Learning算法；（3）通信模块：5G+LoRa双模通信，
确保复杂地形下的数据回传。

5.3.2  训练过程
（1）仿真训练：在ROS-Gazebo平台搭建虚拟输电

线路环境，包含10种典型障碍物（树木、鸟类、塔基
等），训练5000个episode后，Q表收敛（平均奖励稳定在
+80以上）；（2）实地迁移：将仿真训练的Q表作为初始
值，在泉乐ⅠⅡ线23–24号塔段进行实地微调，训练1000个
episode后，路径规划成功率达98%。

5.3.3  实际巡检效果
相比传统A*算法，Q-Learning规划路径平均缩短

15%，曲率波动减少40%（路径更平滑）；导线断股/散
股检测准确率从85%提升至97%，异物悬挂检测率从90%
提升至99%；单塔段巡检时间从2.5小时缩短至1.8小时，
激光雷达扫描数据量减少60%（仅对高优先级区域精细扫
描）；成功应对3次突发障碍物（2次鸟类筑巢、1次树木
倒伏），自动绕行成功率100%。

5.4  技术创新点
一是多模态感知融合：结合激光雷达的几何信息

与双目视觉的语义信息，构建高精度环境模型；二是

价值分布强化学习：采用QR-DQN算法（分位数回归深
度Q网络），解决传统Q-Learning的“过估计”问题，
提升奖励预测准确性；三是优先级经验回放：根据状

态优先级（如高缺陷风险区域）动态调整经验采样概

率，加速关键场景学习；四是硬件-算法协同优化：通过
JetsonAGXXavier的TensorRT加速Q表推理，实现10ms级
实时路径规划。

结语

Q-Learning算法借助强化学习机制，为输电线路巡检
路径规划带来动态自适应新思路。它突破传统局限，在

环境建模上精准模拟复杂线路场景，多目标优化中兼顾

效率、成本与安全，协同巡检时实现多无人机/机器人高
效配合，大幅提升巡检效率，降低安全风险。如今，深

度强化学习赋予其更强的决策能力，数字孪生提供逼真

虚拟环境用于训练优化。随着这些先进技术深度融合，

Q-Learning必将在智能电网建设中释放更大潜能，引领输
电线路巡检模式迈向全自主运行、高可靠保障、低成本

运维的新时代。
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