桥梁工程质量通病防治措施

贺科军 舟山市普陀山公路与运输管理中心 浙江 舟山 316000

摘 要:本文针对桥梁工程中常见的质量通病,提出了一系列的防治措施。这些通病主要包括混凝土裂缝、钢筋锈蚀、预应力损失过大等。为了有效解决这些问题,提出了一系列实用的防治措施,包括优化混凝土配合比、保证钢筋保护层厚度、加强预应力筋锚固质量的控制、优化桥面铺装材料设计等。通过这些措施的实施,可以显著提高桥梁工程的质量水平、保障人民群众的生命财产安全。

关键词:桥梁;工程质量;通病防治

引言:桥梁工程作为交通基础设施的核心环节,它不仅是连接不同地区的重要纽带,同时也是确保道路交通安全与畅通的关键所在。桥梁工程的质量直接关系到道路交通的安全与畅通,一旦出现质量问题,将会对人民群众的生命财产安全带来严重威胁。因此,必须采取科学合理的防治措施,确保桥梁工程的质量达到国家标准,从而为国家的经济发展和人民群众的安全出行提供有力保障。

1 桥梁工程质量通病概述

在桥梁工程建设中,存在着一些常见的质量通病, 这些问题如果得不到及时的发现和解决,会对桥梁的使 用寿命和安全性产生严重影响。因此,加强质量控制和 质量管理,预防和解决这些质量通病是非常重要的。混 凝土质量问题是桥梁工程中最常见的问题。在混凝土配 制、振捣和养护过程中,如果不符合标准和规范要求, 就会出现混凝土强度不达标、开裂等问题。合理设计混 凝土配合比、严格控制水灰比、加强振捣和震动工艺、 严格按照养护规范进行养护, 是预防混凝土质量问题的 关键措施。加强施工过程中的质量监管和控制,确保施 工质量的稳定和可靠性。钢筋作为桥梁结构的骨架, 承 担着承载荷载的重要任务。如果钢筋存在损伤、腐蚀, 或者连接不牢固、焊接质量差等问题,就会使桥梁的承 载能力和稳定性受到影响。选择合格可靠的钢筋供应商 和生产厂家,严格按照标准和规范进行钢筋连接和焊 接,加强对钢筋质量的监管和检验,是预防钢筋质量问 题的关键措施。桥面铺装质量问题是桥梁工程中常见的 外观质量问题。如果桥面铺装的混凝土表面不平整、开 裂,或者材料质量不合格、厚度不足,就会对行车安全 和使用寿命产生不良影响[1]。提高施工技术水平,选择合 格的铺装材料,严格控制施工质量,确保桥面的平整度 和均匀度,是预防桥面铺装质量问题的关键措施。伸缩 缝和接缝处理问题也是桥梁工程中常见的质量问题。桥 梁工程质量通病的防治需要从混凝土质量、钢筋质量、 桥面铺装质量和伸缩缝接缝处理等多个方面入手,加强 工程质量管理和监督,采取相应的防治措施,早期发现 和解决问题,确保桥梁工程的质量和安全性。只有这 样,才能保证桥梁的长期稳定运行,为城市的发展和人 民的生活提供便利。

2 桥梁工程质量通病的类型及原因分析

2.1 混凝土裂缝

桥梁工程质量通病之一是混凝土裂缝。裂缝是桥梁 工程中最常见的问题之一, 对桥梁的耐久性和安全性产 生了严重影响。混凝土裂缝的产生原因很多,主要包 括材料问题、施工问题、环境影响等。材料问题是最常 见的原因之一。混凝土配合比不合理、水泥用量过多、 砂石级配不当等都可能导致混凝土裂缝的产生。施工过 程中的问题也是裂缝产生的重要原因。例如,振捣不密 实、养护不及时、拆模过早等都可能造成混凝土裂缝。 环境因素也是不可忽视的原因。例如,温度变化、湿度 变化、化学腐蚀等都可能引起混凝土裂缝。根据裂缝的 性质和产生原因的不同, 混凝土裂缝可以分为多种类 型。其中,最常见的类型包括:干缩裂缝、温度裂缝、 荷载裂缝等。干缩裂缝是由于混凝土表面水分蒸发过快 而产生的;温度裂缝是由于温差过大而引起的;荷载裂 缝是由于桥梁承受的荷载超过设计值而产生的。混凝土 裂缝对桥梁的危害很大, 裂缝主要会影响桥梁的承载能 力,降低桥梁的安全性。裂缝会加速桥梁的腐蚀,缩短 桥梁的使用寿命。裂缝还会影响桥梁的外观,对桥梁的 使用价值造成影响。

2.2 钢筋锈蚀

桥梁工程中,钢筋锈蚀是一个常见的质量问题。钢筋作为桥梁的重要骨架,对桥梁结构的承载能力和稳定

性起着至关重要的作用。然而,由于氧气、水和二氧化碳的存在,钢筋会受到腐蚀的影响,导致钢筋表面出现锈蚀现象。钢筋锈蚀是桥梁工程中一种常见的物理和化学现象。当钢筋暴露在潮湿、湿润的环境中,空气中的氧气和水分会与钢筋表面的铁发生反应,形成铁氧化物,即钢筋的锈蚀。在大气环境中,二氧化碳与水结合形成碳酸,会降低混凝土的碱度,进一步加剧钢筋的锈蚀。钢筋锈蚀不仅会影响钢筋的机械性能,还会降低桥梁结构的强度和稳定性。首先,钢筋锈蚀会导致钢筋截面积减小,进而降低了钢筋的承载能力。其次,锈蚀钢筋与混凝土之间的黏结力也会降低,影响了桥梁结构的整体强度。此外,钢筋锈蚀还会导致桥梁结构的变形和开裂,进一步加剧了结构的损坏。

2.3 预应力损失过大

桥梁工程质量通病之一是预应力损失过大。预应力 损失过大是指在桥梁施工过程中,由于各种因素的影响,导致预应力混凝土的预应力值与设计值存在较大的 偏差。这种偏差会对桥梁的结构安全性和使用寿命产生 严重影响。预应力损失的产生原因有很多,在施工过程 中,钢绞线会受到反复的拉压作用,导致其松弛度逐渐 增加,从而影响预应力的精度。混凝土在硬化过程中会 发生收缩和徐变,从而引起预应力损失^[2]。此外,混凝土 的徐变也会随着时间的推移而增加,从而引起预应力的 损失。锚具是固定钢绞线的重要部件,如果锚具与钢绞 线之间的摩擦力不足,会导致锚具滑动,从而引起预应 力的损失。温度变化也是导致预应力损失的重要因素之 一。例如,在桥梁施工中,如果对混凝土进行蒸汽养护 或受到季节性温度变化的影响,会导致混凝土的收缩和 徐变发生变化,从而引起预应力的损失。

3 桥梁工程质量通病防治措施

3.1 优化混凝土配合比

在桥梁工程中,混凝土是主要的结构材料,因此混凝土质量的优化和控制对于桥梁的安全和耐久性至关重要。混凝土配合比是指混凝土中水泥、砂子、骨料和水的比例和配比关系。优化混凝土配合比可以改善混凝土的力学性能、抗渗性能和耐久性能,有效防止一系列混凝土质量问题的发生。要根据桥梁的设计要求和使用环境,在合理的范围内确定混凝土的强度等级。根据混凝土强度等级的要求,选择合适的骨料、砂子和水泥类型和品种,确保材料的质量可靠。合理控制水灰比。水灰比是指水与水泥的质量比。水灰比的大小直接影响混凝土的工作性能、强度和耐久性。一般来说,水灰比越小,混凝土的强度越高,但工作性能可能会受到影响。

因此, 在控制水灰比的同时, 要确保混凝土的工作性能 和抗渗性能。还要合理选择骨料和砂子的粒径和配合 比。骨料和砂子的粒径对混凝土的强度和抗渗性能有较 大影响。一般来说,采用多级骨料和砂子配合,能够提 高混凝土的密实性和强度,减少孔隙和砂浆含量,提高 抗渗性能。另外, 要采用合适的掺合料来改善混凝土的 性能。掺合料是指在混凝土中与水泥共同反应,增加其 物理和化学性能的材料。常用的掺合料有矿渣粉、矿 粉、矿渣沸石、粉煤灰等。通过适量添加掺合料,可以 改善混凝土的抗裂性能、抗渗性能和耐久性能, 提高混 凝土的综合性能。加强施工过程的质量控制和管理也是 确保混凝土质量的重要手段。要加强对原材料的检验和 控制,确保材料的质量符合标准要求。在施工过程中, 要严格控制搅拌水量、搅拌时间和搅拌顺序,确保混凝 土充分搅拌, 避免出现坍落度不合格和性能不稳定的问 题。同时,加强对混凝土的养护工作,及时排除混凝土 表面的砂浆水分和干燥缩裂等问题,确保混凝土的强度 和耐久性。

3.2 保证钢筋保护层厚度

在桥梁工程中,保证钢筋保护层的厚度是确保桥梁 结构安全和耐久性的重要环节。钢筋保护层是指混凝土 覆盖在钢筋表面的一层保护材料, 其主要作用是保护钢 筋不受外界环境的侵蚀, 防止钢筋锈蚀和损坏。保证钢 筋保护层厚度的合理性是避免钢筋锈蚀的重要保证。合 理设计混凝土结构的钢筋保护层厚度。根据桥梁的使用 环境、荷载要求和混凝土的耐久性等因素,进行合理的 钢筋保护层厚度设计。通常情况下,一般要求在混凝土 表面到钢筋表面之间设置一定的保护层厚度,以确保钢 筋远离潮湿、酸性或碱性环境,减少钢筋锈蚀的风险。 加强施工过程中对钢筋保护层厚度的控制。在浇筑混凝 土的过程中,采取相应的措施,如使用适当的振捣方 法,确保混凝土充分填充钢筋和模板空隙。通过使用合 适的检测工具和方法,对钢筋保护层厚度进行定期检测 和测量。如使用电磁感应仪等工具对混凝土结构进行无 损检测,检测钢筋保护层厚度的合格性。对于不符合要 求的部分,要立即采取相应的修复措施,确保钢筋保护 层的厚度符合设计要求。加强施工方和监理单位的沟通 和协作,确保保护层厚度得到充分重视。施工方要加强 对施工人员的培训和技术指导,提高施工质量。监理单 位要加强对施工过程的监督和检查, 及时发现并纠正施 工中的问题,确保钢筋保护层厚度的质量和合规性。通 过合理设计、加强施工过程的控制与监管,加强质量检 验和监督,确保钢筋保护层厚度的正确施工和合格性,

达到有效预防钢筋锈蚀的目的。这样,才能确保桥梁工 程的安全使用和长期耐久性。

3.3 加强预应力筋锚固质量的控制

预应力筋的锚固质量是桥梁工程中非常重要的一 环。预应力筋的锚固是将预应力筋与混凝土结构牢固连 接的过程, 其质量的好坏直接影响桥梁结构的强度和稳 定性。加强预应力筋锚固质量的控制是确保桥梁工程质 量的关键措施。选择高质量的预应力筋和锚具, 保证 其的合格性和可靠性。在采购过程中,要对预应力筋和 锚具的质量进行严格检验,确保其符合标准要求。关注 预应力筋和锚具的材料、规格、结构和性能等指标,确 保其质量可靠。在进行预应力筋锚固施工前,要对施工 人员进行培训,确保施工人员掌握正确的施工方法和技 术。在施工过程中,要严格按照设计要求进行施工,确 保预应力筋的正确安装和锚固。合理选择预应力筋锚固 的位置和方式, 保证预应力筋与混凝土结构的紧密连 接。严格控制施工现场的环境和温度,确保施工材料的 稳定性和可靠性[3]。通过加强对施工过程的监督和检查, 及时发现并处理施工中的问题。定期进行钢筋保护层的 测量和检测,确保预应力筋锚固位置和锚固长度的准确 性。进行无损检测,如超声波检测等,检测预应力筋锚 固的质量和可靠性。对于发现的问题和不合格的部分, 要及时采取措施进行修复和整改。施工方要加强对施工 人员的培训和技术指导,提高施工质量。监理单位要加 强对施工过程的监督和检查,及时发现并纠正施工中的 问题,确保预应力筋锚固质量的良好。通过选择高质量 的预应力筋和锚具,加强施工过程的质量控制,加强质 量检验和监督,保证预应力筋与混凝土结构的牢固连 接,确保桥梁工程的安全和耐久。只有做好预应力筋锚 固的质量控制,

3.4 优化桥面铺装材料设计

桥面铺装材料是指覆盖在桥面上的层状材料,其主要作用是提供交通载荷传递、保护桥面结构和提供行车舒适性。优化桥面铺装材料设计可提高桥面的耐久性、抗滑性和舒适性,有效预防和控制一系列桥面铺装质量问题的发生。要根据桥梁的设计要求和使用环境,选择合适的桥面铺装材料。根据桥梁的交通量、车辆类型和

预计使用寿命等因素, 选择具有良好耐久性和耐磨性能 的桥面铺装材料,如沥青砼、沥青混凝土等。同时,要 考虑桥面的施工难易程度、成本等因素,选择经济实用 的桥面铺装材料。桥面铺装材料的厚度与桥面的强度和 耐久性密切相关。根据桥梁的设计要求和交通需求,确 定合适的桥面铺装材料厚度和配合比。合理控制桥面铺 装材料的厚度可以减少材料的使用量,降低成本,并且 能够提升桥面的耐久性和稳定性。选择适宜的桥面铺装 材料组合。根据桥面的使用情况和要求,选择不同类型 的桥面铺装材料组合,如沥青砼面层和沥青混凝土基层 组合、水泥砂浆面层和石油沥青基层组合等。合理选择 桥面铺装材料组合可以更好地满足桥面的使用需求,提 高行车舒适性和抗滑性能。在桥面铺装的施工过程中, 要严格按照设计要求进行施工,确保桥面铺装材料的均 匀性和一致性。加强对材料供应的监管,确保桥面铺装 材料的质量可靠。严格控制施工现场的环境和温度,避 免影响桥面铺装材料的性能和施工质量。通过选择合适 的桥面铺装材料、合理控制厚度和配合比、选择适宜的 材料组合,并加强施工过程的质量控制和管理,可以提 高桥面铺装的耐久性、抗滑性和舒适性, 确保桥梁工程 的安全和耐久。

结语

桥梁工程质量通病的防治需要建设方、设计方、施工方、监理方等各方面的共同努力。只有通过科学合理的措施,从设计、选材、施工、维护等各个环节进行全面把控,才能真正提高桥梁工程的质量水平,减少质量通病的出现。最终,通过各方面的共同努力,为人民群众提供更加安全、可靠的桥梁工程,保障生命财产安全,促进社会的可持续发展。

参考文献

[1]赵军.桥梁工程质量通病及防治措施[J].交通世界, 2020(12):178-179.

[2]王永辉.公路桥梁工程质量通病及其防治措施[J].建筑工程技术与设计,2021(34):418.

[3]刘小勇.市政桥梁工程质量通病及防治措施[J].建筑工程技术与设计,2021(35):577.