交通工程土建施工中混凝土施工技术研究

王晓屿 山东高速威海发展有限公司 山东 威海 264200

摘 要:交通工程土建施工中,混凝土施工技术是关键环节,直接影响工程质量与安全。本文深入研究混凝土施工技术在交通工程土建中的应用,包括配合比设计、施工工艺优化、质量控制等方面。通过对比分析不同施工条件下的混凝土性能,提出了针对性的技术措施,旨在提高混凝土施工效率与质量,保障交通工程土建项目的稳定性和耐久性。研究成果对指导实际施工、推动交通工程土建技术发展具有重要意义。

关键词:交通工程;土建施工;混凝土

1 交通工程土建施工概述

交通工程土建施工是交通基础设施建设的核心环节,涵盖了道路、桥梁、隧道等基础设施的规划、设计、施工和管理工作。其主要目标是构建安全、高效、经济、环保的交通基础设施,以支撑国家经济发展和社会进步。在施工过程中,需要遵循严格的施工流程和工艺,确保施工质量和安全性。这包括地基处理、基础工程、边坡工程、排水工程和绿化工程等多个方面,针对不同施工内容和具体情况,需要采用不同的施工方法和措施,如机械化施工、人工施工、全面施工和分期施工等。交通工程土建施工还需要对材料质量和性能进行严格控制,确保施工材料符合设计要求。在施工过程中,还需要加强施工质量的监督和检查,确保各项工程指标达到设计要求,提高交通基础设施的使用寿命和质量。

2 交通工程土建施工中混凝土原材料选择

交通工程土建施工中,混凝土原材料的选择至关重要,直接关系到工程的耐久性、安全性和经济性。优质的水泥应作为首选,它应具备良好的水化性能和强度发展,以满足不同设计强度等级的需求。骨料方面,应选用质地坚硬、级配良好的碎石或卵石,以保证混凝土的密实度和工作性能^[1]。为改善混凝土的和易性、减少用水量及提高耐久性,应合理选用外加剂,如减水剂、缓凝剂等。还需注意控制砂石骨料的含泥量和有害物质含量,以及水泥的安定性等关键指标,确保混凝土原材料的质量符合相关标准和设计要求,为交通工程土建施工提供坚实的基础。

3 交通工程土建施工中混凝土配合比设计

3.1 配合比设计原则

在交通工程土建施工中,混凝土配合比的设计原则 主要基于混凝土的强度等级、工作性、耐久性等要求。 设计时应合理确定水泥、砂、石、水的比例,并考虑到 原材料的性质、施工条件、环境类别等因素,以确保混凝土的质量和经济效益。具体而言,设计需满足以下要求:达到混凝土结构设计要求的强度等级;满足混凝土施工所要求的和易性,包括流动性、黏聚性和保水性;满足工程所处环境和使用条件对混凝土耐久性的要求;符合经济原则,节约水泥,降低成本。

3.2 配合比设计流程

混凝土配合比设计是一个计算、试配、调整的复杂过程,大致可分为初步计算配合比、基准配合比、实验室配合比、施工配合比设计四个设计阶段。第一、按照已选择的原材料性能及对混凝土的技术要求进行初步计算,得出"初步计算配合比"。第二、在初步计算配合比的基础上,通过试配、检测、进行工作性的调整、修正,得到基准配合比。第三、通过对水灰比的微量调整,在满足设计强度的前提下,进一步调整配合比以确定水泥用量最小的方案,即实验室配合比。第四、考虑砂、石的实际含水率对配合比的影响,对配合比做最后的修正,得到实际应用的施工配合比。

3.3 影响配合比设计的因素

在配合比设计中,多种因素会影响混凝土的性能和质量。其中,水泥强度是关键因素之一,水泥强度与混凝土的强度成正相关。骨料的质量和级配也直接影响混凝土的密实度和强度。砂率的选择需平衡混凝土的孔隙率和流动性,砂率过大或过小都会导致混凝土性能下降。外加剂的种类和用量可调节、改善混凝土强度,不同的外加剂效果不同,需根据实际需求选择。水胶比则影响混凝土的黏结作用和强度,需严格控制。掺合料的选用如矿粉、粉煤灰等,可改善材料性能,提升材料强度。具体数据方面,例如,对于预应力混凝土结构,最大氯离子含量为0.06%,最小水泥用量为350kg/m³,最大水灰比为0.40。在设计时,需结合具体工程要求和施工条

件,综合考虑以上因素,以获得最佳的配合比。

4 交通工程土建施工中混凝土施工工艺

4.1 混凝土搅拌

混凝土搅拌是交通工程土建施工中的关键环节,其质量直接影响到混凝土的均匀性、强度和耐久性。在搅拌前,应对水泥、骨料、水等原材料进行严格的检验和计量,确保各项性能指标符合设计要求^[2]。搅拌设备应选用性能稳定、计量准确的强制式搅拌机,以保证混凝土的均匀性和稳定性。搅拌时,应按照预定的配合比将原材料依次投入搅拌机,先投入骨料和水泥,再加入适量的水进行搅拌。搅拌时间应根据混凝土的坍落度、强度等级和搅拌机的性能进行调整,一般不少于2分钟,以确保混凝土充分混合均匀。在搅拌过程中,要严格控制加水量,避免混凝土过稀或过干;要定期清理搅拌机,防止残留物影响混凝土质量;要对搅拌后的混凝土进行抽样检测,确保其性能指标符合设计要求。随着科技的发展,越来越多的智能化搅拌设备被应用于交通工程土建施工中。

4.2 混凝土运输

混凝土运输设备主要有搅拌车和泵车两种。搅拌车适用于短距离运输,能够保持混凝土的均匀性和流动性。泵车则适用于高层建筑和远距离运输,能够直接将混凝土泵送到指定位置。在运输过程中,需注意以下几点:一是要选择性能稳定、密封性好的运输设备,防止混凝土在运输过程中发生泄漏;二是要合理安排运输路线和时间,避免混凝土在运输过程中发生初凝;三是要定期对运输设备进行维护和保养,确保其正常运行。在运输过程中还需注意混凝土的保温和防晒,在高温天气下,应采取遮阳措施,防止混凝土因温度过高而失去流动性;在低温天气下,应采取保温措施,防止混凝土因温度过低而结冰。

4.3 混凝土浇筑

混凝土浇筑是将运输到施工现场的混凝土倒入模板内的过程。在浇筑前,应对模板进行清理和检查,确保模板表面平整、无杂物和积水。还需对钢筋进行绑扎和固定,确保钢筋的位置和间距符合设计要求。浇筑时,应根据混凝土的坍落度和浇筑高度选择合适的浇筑方法。对于低坍落度混凝土,可采用人工浇筑或插入式振捣器振捣;对于高坍落度混凝土,可采用泵送或自流平浇筑。在浇筑过程中,应严格控制浇筑速度和浇筑高度,避免混凝土因冲击力过大而产生分层和离析。在浇筑过程中还需要合理安排浇筑顺序和浇筑时间,确保混凝土能够连续、均匀地浇筑到模板内;要对浇筑后的混

凝土进行及时振捣和抹平,以提高混凝土的密实度和平整度;要对浇筑过程中的混凝土进行抽样检测,确保其性能指标符合设计要求。

4.4 混凝土振捣

混凝土振捣是混凝土浇筑过程中的重要环节, 其作 用是使混凝土更加密实、均匀,提高混凝土的强度和耐 久性。插入式振捣器适用于厚度较大的混凝土构件,如 梁、板等。振捣时,应将振捣器插入混凝土内部,利用 振捣器的振动作用使混凝土颗粒重新排列、紧密结合。 振捣时间应根据混凝土的坍落度和振捣器的性能进行调 整,一般不少于20秒。振捣过程中,应确保振捣器插入 深度达到混凝土底部,并避免与模板和钢筋发生碰撞。 附着式振捣器适用于厚度较小的混凝土构件, 如墙、柱 等。振捣时,应将振捣器固定在模板上,利用振捣器的 振动作用使混凝土颗粒紧密结合。振捣时间同样应根据 混凝土的坍落度和振捣器的性能进行调整。在振捣过程 中,还需注意以下几点:一是要严格控制振捣时间和振 捣强度,避免混凝土因振捣过度而产生分层和离析;二 是要定期对振捣器进行维护和保养,确保其正常运行; 三是要对振捣后的混凝土进行及时抹平和修整,以提高 混凝土的平整度和美观度[3]。

4.5 混凝土养护

混凝土养护是混凝土施工后的关键环节, 其目的是 保持混凝土内部的水分和温度稳定,促进混凝土的硬化 和强度发展。养护方式主要有自然养护和人工养护两 种。自然养护是指利用自然环境中的温度和湿度对混凝 土进行养护, 在气温较高、湿度较大的地区, 可采用自 然养护方式。养护时间一般不少于7天,具体根据混凝 土的强度等级和气候条件进行调整。在养护过程中,应 定期对混凝土进行洒水保湿, 防止混凝土因失水过快而 产生裂缝。人工养护是指利用人工手段对混凝土进行养 护, 如覆盖保湿、加热升温等。在气温较低、湿度较小 的地区,或对于强度等级较高的混凝土,可采用人工养 护方式。养护时间同样不少于7天,具体根据混凝土的强 度等级和气候条件进行调整。在养护过程中, 应严格控 制养护温度和湿度,避免混凝土因温度变化过快而产生 裂缝。在养护过程中,要定期对混凝土进行洒水保湿或 覆盖保湿,防止混凝土因失水过快而产生裂缝;严格控 制养护温度和湿度,避免混凝土因温度变化过快而产生 裂缝;要对养护过程中的混凝土进行抽样检测,确保其 性能指标符合设计要求。

5 混凝土施工技术在交通工程土建中的具体应用

5.1 高速公路工程中的混凝土施工技术

在高速公路工程中, 混凝土施工技术扮演着至关重 要的角色,它不仅关乎道路的平整度、耐用性,还直接 影响到行车安全与舒适度。高速公路路面通常采用沥青 混凝土或水泥混凝土,其中,水泥混凝土路面因其强度 高、耐久性好、维护成本低而备受青睐。施工时,需严 格控制混凝土的配合比,确保强度、工作性和耐久性满 足设计要求。采用滑模摊铺机进行连续、均匀的摊铺, 随后进行振捣、抹面、压纹等工序,以提高路面的平整 度和抗滑性能。路基是高速公路的支撑结构, 其稳定性 直接影响到路面的使用寿命,在路基施工中,混凝土常 被用于加固软土地基、处理边坡等。混凝土挡土墙、护 坡等结构也被广泛应用于路基边坡防护, 以增强路基的 稳定性。高速公路的附属设施,如护栏、排水沟、桥梁 墩台等,同样需要高质量的混凝土进行施工。这些设施 不仅要求混凝土具有良好的力学性能和耐久性, 还需满 足美观、环保等要求。因此在施工过程中, 需严格控制 原材料质量,优化配合比设计,并采用先进的施工技术 和设备,确保设施的安全性和功能性。

5.2 桥梁工程中的混凝土施工技术

桥梁工程是交通工程土建中的重要组成部分, 混凝 土施工技术在桥梁建设中发挥着至关重要的作用。桥墩 和桥台是桥梁的支撑结构, 其施工质量直接影响到桥 梁的稳定性。在施工中,需根据桥梁的设计要求、地质 条件以及施工环境,选择合适的混凝土配合比和施工方 法。桥墩和桥台的模板设计也至关重要, 需确保模板的 刚度、稳定性和密封性,以防止混凝土在浇筑过程中发 生漏浆、变形等问题。桥面是桥梁的主要行车面,其平 整度、耐久性和抗滑性能直接关系到行车安全和舒适 度。在桥面施工中, 需严格控制混凝土的配合比和施工 工艺,确保桥面混凝土的强度、工作性和耐久性满足设 计要求。还需注意桥面排水系统的设置,以防止积水对 桥面造成损害[4]。桥梁护栏和附属设施如灯杆、标志牌 等,同样需要高质量的混凝土进行施工。这些设施不仅 要求混凝土具有良好的力学性能和耐久性,还需满足美 观、环保等要求。在施工过程中, 需严格控制原材料质 量,优化配合比设计,并采用先进的施工技术和设备, 确保设施的安全性和功能性。

5.3 隧道工程中的混凝土施工技术

隧道工程是交通工程土建中的另一重要组成部分, 混凝土施工技术在隧道建设中同样发挥着至关重要的作 用。隧道衬砌是隧道的主要承载结构,其施工质量直 接影响到隧道的稳定性和安全性。在施工中, 需根据隧 道的地质条件、设计要求以及施工环境, 选择合适的混 凝土配合比和施工方法。例如,对于软弱围岩隧道,可 采用钢纤维混凝土或高性能混凝土进行衬砌施工,以提 高隧道的承载能力和抗渗性能。同时还需注意衬砌模板 的设计和施工,确保模板的刚度、稳定性和密封性,以 防止混凝土在浇筑过程中发生漏浆、变形等问题。隧道 排水系统是保证隧道内干燥、通风的关键设施。在施工 中,需根据隧道的地质条件、设计要求以及施工环境, 合理布置排水管道和排水沟。同时注意排水管道的材料 选择和连接方式,确保排水系统的畅通和耐久性。隧道 通风设施是保证隧道内空气质量、降低温度、提高行车 安全的重要设施。在施工中, 需根据隧道的设计要求、 交通流量以及施工环境,选择合适的通风设备和施工方 法。例如,可采用射流风机、轴流风机等通风设备,将 隧道内的污浊空气排出,保持隧道内的空气清新,还需 注意通风设备的安装位置和连接方式, 确保通风系统的 稳定性和效率。

结束语

混凝土施工技术在交通工程土建施工中具有举足轻重的地位。通过对混凝土施工技术的深入研究,掌握了多项关键技术,为交通工程土建项目的顺利实施提供了有力保障。未来,随着科技的不断进步和交通工程土建领域的持续发展,将继续探索和创新混凝土施工技术,不断提升工程质量与安全水平,为交通事业的发展贡献力量。

参考文献

- [1]刘巍.交通工程土建施工中混凝土施工技术研究[J]. 运输经理世界,2023,(25):19-21.
- [2]张亮.交通工程土建施工中混凝土施工技术探讨[J]. 建筑技术开发,2021,48(02):124-125.
- [3]段国胜.交通工程土建施工中混凝土施工技术[J].工程建设与设计,2020,(18):177-178.
- [4]杨玉君.论交通工程施工中对混凝土质量的检测[J]. 工程建设与设计,2020,(13):243-244.