探讨道路桥梁施工技术管理以及道路桥梁养护措施

张生辉

达州市金鼎鑫贸易有限公司 四川 达州 635000

摘 要:通过对施工技术管理在施工前准备、关键技术管理、质量与安全控制等方面的详细分析,以及道路与桥梁养护措施的具体探讨,本文揭示了施工技术管理与养护措施在保障道路桥梁工程质量、延长使用寿命和确保交通安全中的关键作用。还强调了施工技术管理与养护措施的协同发展,提出了信息共享、人才培养与技术创新的实施策略,以期推动道路桥梁工程建设与养护行业的可持续发展。

关键词: 道路桥梁; 施工技术管理; 养护措施; 协同发展; 质量控制

引言: 道路桥梁作为交通基础设施的重要组成部分,其建设质量和养护水平直接关系到交通运输的安全与效率。随着城市化进程的加快和交通需求的不断增长,道路桥梁工程面临着更为复杂的地质条件和更高的性能要求。加强施工技术管理,实施有效的养护措施,对于保障道路桥梁工程的长期稳定和安全运行具有重要意义。

1 道路桥梁施工技术管理

1.1 施工前技术准备

道路桥梁施工前期,技术准备极为关键。工程勘察与设计文件审核乃重中之重,需精准评估地质勘察资料,保证地质条件与土壤承载力数据无误,为施工筑牢根基。设计图纸审查不可小觑,要确认其完整合理,契合设计规范,布局科学且满足使用与安全需求。结构设计计算复核深入验证设计方案,借精确计算确保结构稳固。施工工艺可行性分析亦关键,深入探究施工方法、流程与设备选型,衡量实际操作的可行性与效率。施工组织设计编制整合各项准备,形成含总体部署、进度规划、资源调配等的详细计划,资源调配细致规划人、材、机,实现合理配置高效利用。施工场地布置规划系、机,实现合理配置高效利用。施工场地布置规划系统机,实现合理配置高效利用。施工场地布置规划系统机,实现合理配置高效利用。施工场地布置规划系统,是现分、临时设施搭建与交通路线规划,以优化环境提升效率。技术交底作为最后环节,向施工团队详尽传达设计意图、工艺要求并讲解分项工程流程,让施工人员明晰方案,为施工顺利推进铺就坚实道路。

1.2 道路施工关键技术管理

道路施工关键技术管理涵盖了路基施工和路面施工 两大方面。路基施工技术是道路施工的基础,填方路基 施工要点包括填料的选择与处理、分层填筑厚度与压实 工艺控制。填料的选用需考虑其物理力学性质,确保满 足路基强度和稳定性的要求。分层填筑和压实工艺则需 严格控制每层填筑的厚度和压实度,确保路基的密实度 和均匀性^[1]。挖方路基施工则需注意边坡稳定性的控制,通过合理的边坡坡比设计和排水系统设置,防止边坡失稳和滑坡事故的发生。路面施工技术则包括沥青路面施工和水泥混凝土路面施工。沥青路面施工技术管理需关注沥青混合料的配合比设计与优化,以及摊铺、碾压工艺参数的确定与监控。水泥混凝土路面施工则需注重模板安装精度控制、混凝土浇筑与振捣工艺管理,以及伸缩缝的设置与施工质量保障。

1.3 桥梁施工关键技术管理

桥梁施工关键技术管理涉及基础施工、下部结构施工和上部结构施工等多个环节。基础施工技术中,桩基础施工技术要点包括灌注桩成孔工艺的选择与控制、钢筋笼制作与安装质量的把控,以及混凝土浇筑过程的监控。扩大基础施工则需注意基坑开挖与支护方案的实施,以及基底处理和混凝土浇筑质量的保障。下部结构施工技术主要关注桥墩与桥台的施工工艺管理,包括钢筋加工与安装规范、模板搭建与拆除技术要求,以及混凝土浇筑质量控制措施。上部结构施工技术则涉及预制梁施工与架设技术、现浇梁施工技术等多个方面。预制梁施工与架设技术、现浇梁施工技术等多个方面。预制梁施工与架设技术、现浇梁施工技术等多个方面。预制梁施工需注重预制梁场的建设与管理,以及预制梁生产过程的质量控制。梁体架设则需制定详细的架设方案,确保架设过程的安全和效率。现浇梁施工则需关注支架搭设与预压技术、混凝土浇筑顺序与振捣方法,以及预应力张拉与锚固工艺管理。

1.4 施工技术管理中的质量与安全控制

在施工技术管理中,质量与安全控制是确保工程质量和施工安全的关键。质量控制体系与制度的建立是质量控制的基石,通过设定明确的质量目标和分解任务,实施质量检验与验收制度,确保施工过程中的每个环节都符合质量标准。原材料检验与试验程序、工序质量检查与评定标准等制度的实施,则是对施工质量的进一步

保障。对于出现的质量问题,需建立及时有效的处理与整改机制,确保问题得到及时解决。安全管理措施与应急预案的制定则是施工安全控制的重点。通过施工安全风险识别与评估,提前识别潜在的安全隐患,制定针对性的安全防护措施。高处作业、临边防护措施的设置与检查,以及机械设备安全操作规程的制定与执行,都是确保施工安全的重要措施。

1.5 施工技术资料管理

施工技术资料管理工作是施工技术管理的重要组成部分,它涉及工程变更文件、施工记录、质量检验报告与评定资料等多个方面。资料收集范围与内容需明确界定,确保资料的完整性和准确性。工程变更文件需及时记录并归档,以便后续施工和结算工作的顺利进行。施工记录则包括隐蔽工程验收记录、施工日志等,是反映施工过程和质量的重要凭证。质量检验报告与评定资料则是评估施工质量的重要依据,需严格按照相关标准和规定进行整理和归档。资料整理与归档要求需明确分类整理原则与方法,确保资料的条理性和易查性。档案保存期限与查阅制度则需根据工程特点和相关规定进行设定,确保资料的长期保存和有效利用。通过加强施工技术资料管理,可以为工程竣工验收、质量追溯和后续维护提供有力的支持。

2 道路桥梁养护措施

2.1 道路养护措施

道路养护是确保道路安全、畅通和延长使用寿命的 关键环节。为了有效实施道路养护,需要建立日常巡查 与定期检测制度。巡查频率与内容应根据道路等级、交 通流量、地理环境和历史维修记录等因素综合确定。巡 查工作应重点关注路面破损情况, 如裂缝、坑槽、车辙 等,以及路基的稳定性观测,如沉降、侧移等现象[2]。还 需检查道路附属设施的完整性, 如标志标线、护栏、排 水设施等,确保其正常发挥作用。定期检测项目与方法 则更加全面和专业,包括路面平整度、弯沉检测,以评 估路面的行车舒适性和承载能力; 路基承载能力检测, 以了解路基的强度和稳定性; 以及必要的地质勘察, 以 掌握路基下方的地质变化情况。路面养护措施主要包括 预防性养护和病害修复。预防性养护技术如微表处和雾 封层,可以在路面出现轻微病害前进行处理,提高路面 的防水、抗滑和耐磨性能,延缓病害的发展。对于已经 出现的病害, 如坑槽和裂缝, 需要采取针对性的修复措 施。坑槽修补工艺应确保修补材料与周围路面的良好结 合,避免修补后出现新的病害。裂缝处理方法则包括注 浆、贴缝带等,这些方法可有效封闭裂缝,防止水分和 杂物侵入,从而避免引起进一步的损害。路基养护同样 重要,包括排水系统的维护与清理,确保排水畅通,避 免积水对路基的侵蚀。边坡防护与加固措施的实施,如 植被防护、挡土墙修复与加固等,可以增强边坡的稳定 性,防止滑坡和坍塌事故的发生。

2.2 桥梁养护措施

桥梁作为道路的重要组成部分, 其养护工作同样不 容忽视。桥梁结构检测与评估体系是桥梁养护的基础, 通过定期检测周期与内容的设定,可以及时发现桥梁结 构的潜在问题。外观检查主要关注混凝土裂缝、剥落等 病害情况,以及钢结构的锈蚀、变形等问题。结构性能 检测则包括动静载试验,以评估桥梁的承载能力和动力 性能。检测数据处理与结构评估方法应科学严谨,确保 评估结果的准确性。桥梁上部结构养护措施主要包括梁 体病害修复技术、混凝土缺陷修补工艺以及预应力体系 维护与调整。梁体病害修复技术应针对不同类型的病害 采取不同的修复方法,如注浆、碳纤维加固等。混凝土 缺陷修补工艺应确保修补后的混凝土与原混凝土的良好 结合,避免修补后出现新的裂缝或剥落。支座与伸缩缝 作为桥梁的重要部件,其养护工作同样重要。支座更换 与维护应定期进行,确保支座的支撑力和稳定性。伸缩 缝清理与维修则应避免杂物堵塞,保持其伸缩功能。桥 梁下部结构养护措施主要包括桥墩与桥台病害处理、混 凝土耐久性修复以及基础冲刷防护与加固。混凝土耐久 性修复可通过特定工艺提高混凝土的抗渗、抗冻、抗腐 蚀等性能。基础冲刷防护与加固需依据河流冲刷情况采 取相应的防护措施,如抛石、护岸等。附属设施养护也 是桥梁养护的重要组成部分,包括栏杆、防撞设施等的 检查和维修,确保其正常发挥作用,保障行车安全。

2.3 养护作业安全管理与资源保障

在道路桥梁养护工作中,安全管理是重中之重。养护作业时,必须设置完善的交通疏导与安全警示标志,提前规划好交通路线变更,引导车辆有序通行,避免因养护作业导致交通拥堵或事故发生。要为养护人员配备齐全且合格的安全防护装备,如安全帽、反光背心、安全鞋等,并定期开展安全培训,提升养护人员的安全意识与应急处理能力,使其熟悉各种养护作业场景下的安全操作规程。养护资源的保障也不可或缺。一方面,要合理规划养护资金预算,依据道路桥梁的等级、使用年限、交通流量等因素,科学分配资金到日常巡查、检测、病害修复等各项养护工作中,确保资金充足且高效利用。另一方面,要重视养护设备与材料的采购、储备与更新。及时采购先进的检测设备、维修工具及高质量

的养护材料,如高性能的沥青修补料、混凝土外加剂等,并建立合理的储备机制,保证在养护需求出现时能够迅速投入使用。定期对养护设备进行维护与更新,确保其性能良好,提高养护作业的效率与质量,从而为道路桥梁的长期稳定运行提供坚实的资源后盾。

3 施工技术管理与养护措施的协同发展

3.1 协同作用机制的深度剖析

施工技术管理与养护措施在道路桥梁工程的全生命 周期中,形成了一种相互依存、相互促进的紧密关系。 在施工阶段,科学且合理的施工技术管理不仅能够确保 工程的顺利进行,还能有效减少结构缺陷与质量隐患, 为后续的养护工作创造有利条件。例如,通过精准的结 构设计计算复核与严格的施工工艺控制,可以使道路桥 梁结构在建成后更加坚固耐用,从而降低养护的频率与 难度,延长使用寿命。反过来,养护工作也为施工技术 管理提供了宝贵的反馈。在日常巡查、检测与维修过程 中, 养护人员能够及时发现并处理道路桥梁在使用过程 中出现的问题。通过对这些问题的监测与分析, 可以为 施工技术的改进提供有力的依据。例如,如果发现某路 段路面过早出现车辙病害,这可能是由于沥青混合料的 配合比设计不合理或压实工艺参数不当所导致的。这一 发现将促使施工技术管理在后续项目中优化沥青混合料 的配合比设计或调整压实工艺参数,从而避免类似问题 的再次发生。

3.2 信息共享与传递的重要性及实施策略

为了实现施工技术管理与养护措施的协同发展,信息共享与传递显得尤为重要。在施工阶段,施工单位应确保施工技术的准确记录与整理,包括工程勘察报告、设计图纸、施工记录、原材料检验报告等关键资料。这些资料不仅为施工过程中的质量控制提供了有力支持,也为后续的养护工作提供了重要的参考依据^[3]。在竣工交付时,施工单位应向养护部门提供详尽的施工技术资料,以帮助养护人员深入了解工程结构特点与施工组节。养护部门在日常巡查、检测与维修过程中获取的信息,如结构病害情况、性能变化数据等,也应及时反馈给施工单位与设计单位。这种双向的信息共享与传递机制,有助于各方及时交流信息,共同探讨解决方案,实现对道路桥梁工程质量与性能的全面掌控。为了实现这

一目标,可以建立信息共享平台或定期召开沟通会议等方式。信息共享平台可以提供一个便捷、高效的交流渠道,使各方能够随时查阅、更新和共享相关信息。而定期召开的沟通会议则可以提供一个面对面的交流平台,使各方能够就具体问题进行深入讨论和协商,共同制定解决方案。

3.3 人才培养与技术创新的双轮驱动

协同发展还依赖于复合型人才的培养与技术创新的 推动。在道路桥梁行业中, 既掌握施工技术管理要点又 熟悉养护措施实施要求的专业人员相对稀缺。应加强对 道路桥梁专业人员的培训和教育, 提高其综合素质和专 业技能水平。高校与职业院校可以开设相关课程或专业 方向,培养适应全生命周期管理需求的人才。这些课程 或专业方向可以涵盖施工技术管理、养护措施、结构检 测与加固等多个方面, 使学生能够全面掌握道路桥梁工 程的全生命周期管理知识。在技术创新方面, 积极倡导 施工与养护相关单位加大研发资金投入,探索新型施工 工艺、材料与养护技术。例如,研发高性能的道路桥梁 建筑材料,如高强度、高耐久性的混凝土和钢材等,可 以提高施工质量并便于养护维修;应用智能监测设备与 大数据分析技术,可以实现施工过程的实时监控与养护 决策的科学化。通过技术创新,可以不断提升施工技术 管理与养护措施的协同水平,推动道路桥梁工程建设与 养护行业的可持续发展。

结束语: 道路桥梁施工技术管理与养护措施是保障 道路桥梁工程质量、延长使用寿命和确保交通安全的重 要环节。通过加强施工技术管理,实施有效的养护措 施,以及推动施工技术管理与养护措施的协同发展,可 以不断提升道路桥梁工程建设与养护行业的整体水平, 为交通运输的可持续发展提供有力支撑。

参考文献

[1]赵宗炜.桥梁施工管理养护技术及加固维修措施的研究[J].运输经理世界,2022(35):158-160.

[2]韦浩亮.桥梁工程的维修养护及施工技术探究[J].中小企业管理与科技(中旬刊),2020(02):156-157.

[3]吴长军.道路桥梁施工管理养护及加固维修技术[J]. 建材世界,2019,40(05):46-48.