高速公路沥青路面施工技术

李卫东

新疆生产建设兵团交通建设有限公司 新疆 石河子 832000

摘要:本文围绕高速公路沥青路面施工技术展开深入探讨。详细阐述了高速公路沥青路面施工前的准备工作、各关键施工环节的技术要点、施工质量控制措施以及施工过程中常见问题的处理方法。通过对这些内容的研究分析,旨在为高速公路沥青路面施工提供全面、系统的技术指导,确保施工质量,延长路面使用寿命,提升高速公路的服务性能。

关键词: 高速公路; 沥青路面; 施工技术; 质量控制

引言

高速公路作为现代交通体系的重要组成部分,对于促进经济发展、加强区域间联系具有至关重要的作用。 沥青路面因其具有良好的平整度、抗滑性、噪声小等优点,在高速公路建设中得到了广泛应用。然而,高速公路沥青路面的施工质量直接关系到路面的使用性能和寿命,受到施工材料、施工工艺、施工环境等多种因素的影响。因此,深入研究和掌握高速公路沥青路面施工技术,对于确保高速公路的建设质量和运营安全具有重要意义。

1 施工前的准备工作

施工前的准备工作是高速公路沥青路面施工的关键 环节,对于确保整个工程的质量和进度至关重要。(1) 原材料的质量是决定路面性能的基础。在施工前需对沥 青、粗集料、细集料及矿粉等原材料进行严格检验。 对于沥青材料,应重点检验其针入度、延度、软化点等 关键指标,确保沥青具有适宜的粘稠度、良好的塑性和 热稳定性,以满足设计及规范要求。粗集料应选择具有 足够强度、耐磨性和良好颗粒形状的优质石材, 以确保 路面的力学性能和耐久性。细集料应洁净、干燥、无风 化,以保证与沥青的粘结效果。对矿粉的质量也需严格 把控,确保其细度、亲水系数等指标合格,以提高沥青 混合料的整体性能。(2)根据设计要求和工程实际情 况, 需选择合适的施工机械设备。沥青摊铺机、压路 机、运输车辆等设备的选型和配置应满足施工需求。在 设备进场前,应对其进行全面检查和调试,确保各部件 性能良好, 能够正常运行。例如, 对于摊铺机, 应检查 其摊铺宽度、摊铺厚度调节装置是否准确可靠, 以确保 路面平整度;对于压路机,应检查其碾压速度、振动频 率等参数是否满足施工要求,以确保路面压实度。(3) 认真组织施工人员进行技术交底和安全教育。通过详细 的技术交底,使施工人员熟悉施工流程、技术要求、质量标准和安全注意事项,明确各岗位人员的职责和分工。对施工人员进行必要的技能培训,提高其操作水平和质量意识,确保施工过程中各项工作有序进行,为高质量完成高速公路沥青路面施工任务奠定坚实基础^[1]。

2 沥青混合料的配合比设计

沥青混合料的配合比设计是高速公路沥青路面施工 中的核心环节,对路面的性能和使用寿命具有决定性影 响。(1)在目标配合比设计阶段,我们首先需要对所 使用的原材料进行全面而细致的试验分析。这包括对沥 青的针入度、延度、软化点等关键指标进行精确测试, 以评估其粘稠度、塑性和热稳定性;同时,对集料的级 配、密度、磨耗值等性能指标也需进行严格检测,以 确保集料具有适宜的颗粒组成、良好的力学性能和耐磨 性。(2)基于这些试验数据,我们可以初步确定沥青与 集料之间的比例范围, 为后续的配合比设计提供科学依 据。接下来,我们采用马歇尔试验等先进方法,对沥青 混合料的整体性能进行全面评估。通过系统地调整沥青 用量,观察混合料在不同沥青含量下的稳定度、流值等 关键性能指标的变化情况,从而科学地确定最佳沥青用 量。这一步骤需要反复进行试验,不断调整和优化,以 确保沥青混合料的各项性能指标均能满足设计要求, 达 到最佳的综合性能。(3)在生产配合比设计阶段,我们 将冷料仓中的集料按照目标配合比的比例精确输送到烘 干筒进行加热处理, 然后经热料仓二次筛分后进入搅拌 锅进行混合。在这个过程中, 我们需要根据实际情况和 生产设备的特性,灵活调整热料仓中各档集料的比例, 以确保生产出的沥青混合料性能稳定、质量可靠。通过 多次试拌和调整,我们可以逐步确定生产用的最佳配合 比,为正式生产做好充分准备。(4)在生产配合比验证 阶段,我们严格按照确定的生产配合比进行试拌,并铺

筑试验段进行实地验证。在试验段上,我们会钻取芯样进行马歇尔试验检验,以全面评估生产配合比的可行性和可靠性。通过这一系列的严格试验和验证,我们可以最终确定生产用的标准配合比,为高速公路沥青路面的正式生产提供科学依据和有力保障^[2]。

3 沥青路面施工技术要点

3.1 沥青混合料的拌和

(1) 拌和温度的控制是至关重要的。这包括集料加 热温度、沥青加热温度和混合料出厂温度。不同类型的 沥青和集料,由于其物理和化学性质的差异,对加热温 度的要求也各不相同。例如,普通石油沥青的加热温度 一般需控制在150℃至160℃之间,以确保其流动性和粘 结性。而集料的加热温度则需比沥青高出10℃至20℃, 这样可以使集料表面更加干燥,有利于沥青与集料的充 分粘结。同时,混合料的出厂温度也需严格控制,以确 保在运输和摊铺过程中温度不会过低,影响施工质量。 (2)拌和时间的控制同样重要。干拌时间一般不少于5 秒,这是为了确保集料能够均匀受热,并去除表面的水 分和杂质。湿拌时间则不少于30秒,这是为了让沥青能 够充分包裹集料,形成均匀的混合料。在拌和过程中, 还需密切观察混合料的状态,确保其颜色一致,无花白 料出现。(3)拌和设备的检查和维护也是不可忽视的。 定期对拌和设备进行检查,确保其各部件运转正常,特 别是计量系统的准确性,这是保证混合料配合比符合设 计要求的关键。同时,还需定期对设备进行维护,延长 其使用寿命,提高施工效率。

3.2 沥青混合料的运输

(1)选择大吨位的自卸汽车作为运输工具是至关重 要的。这类车辆不仅承载能力强,而且能够提供良好的 保温性能,有效防止混合料在运输过程中因外界环境因 素的影响而温度降低过快。为了确保混合料不会粘结在 车厢内,需要在车厢底部及四周涂抹一层油水混合液, 形成一层隔离膜,这样既可以方便卸料,又能保持车厢 的清洁。(2)在运输过程中,行车路线的合理安排也是 至关重要的。应根据施工现场的具体位置和交通状况, 制定出最优的行车路线,确保混合料能够及时、准确地 运抵施工现场。同时, 为了避免因交通拥堵等原因导致 的运输延误, 应提前与相关部门进行沟通协调, 确保运 输过程的顺畅。(3)卸料时,同样需要注意一些细节问 题。卸料速度应适中,过快可能导致混合料离析,过慢则 会影响施工效率。因此,操作人员应根据现场实际情况, 合理控制卸料速度。此外,卸料的顺序也应合理安排,应 遵循先远后近、先高后低的原则,确保混合料在施工现 场能够均匀分布,避免出现局部堆积或短缺的情况[3]。

3.3 沥青混合料的摊铺

(1)在摊铺前,对下承层的准备至关重要。应对下 承层进行全面检查,确保其表面平整、干净,无任何杂 物残留。如有凸起或凹陷, 应及时进行处理, 以保证摊 铺层的均匀性和稳定性。同时,还需对摊铺机的工作参 数进行精心调整,包括摊铺速度、摊铺厚度以及振捣频 率等。摊铺速度应根据混合料的供应能力和摊铺宽度来 合理确定,一般控制在2-6m/min的范围内,以确保摊铺 的连续性和稳定性。(2)为了提高摊铺效率和质量, 通常采用两台或多台摊铺机进行梯队作业。在梯队作业 时,相邻两幅之间应保持一定的重叠宽度,一般为30-60mm,以确保摊铺层的接缝处平整、紧密。在摊铺过 程中,操作人员应密切关注摊铺机的运行状态,及时检 查摊铺厚度和平整度。(3)具体来说,可以通过设置在 摊铺机上的传感器或测量工具来实时监测摊铺厚度,如 发现偏差, 应立即调整摊铺机的高度或振捣频率进行修 正。同时,还应使用平整度仪等工具来检查摊铺层的平 整度,确保路面达到设计要求。

3.4 沥青混合料的压实

沥青混合料的压实是沥青路面施工中的至关重要环 节,它直接关系到路面的密实度、平整度和耐久性。 (1) 初压阶段是在混合料摊铺后较高温度下进行的, 一般采用轻型钢轮压路机或关闭振动的振动压路机进行 碾压。初压的目的是为了稳定混合料, 防止其发生推移 或裂纹。初压温度一般不低于135℃,碾压遍数通常为2 遍。在初压过程中,要确保压路机均匀、缓慢地行驶, 以避免混合料产生推移或波浪。(2)复压阶段是压实过 程的关键环节,它决定了路面的最终密实度。复压采用 重型轮胎压路机或振动压路机进行碾压, 碾压遍数根据 混合料类型和厚度来确定,一般为4-6遍。复压温度不低 于120℃,以确保混合料在压实过程中保持良好的塑性。 在复压过程中,要注意压路机的重叠宽度,确保路面均 匀受压,避免出现压实不均的现象。(3)终压阶段是 为了消除轮迹,提高路面的平整度。终压采用双钢轮压 路机进行静压,碾压遍数一般为2-3遍。终压温度不低于 80℃,以确保混合料在终压过程中仍具有一定的塑性, 便于消除轮迹。在终压过程中,要严格控制碾压速度, 避免过快或过慢导致路面出现不平整或裂纹。(4)整个 压实过程应遵循"先轻后重、先慢后快、由边向中"的 原则,确保路面均匀、密实、平整。同时,要严格控制 碾压速度和碾压遍数,避免过度碾压导致混合料破碎或 离析[4]。

3.5 接缝处理

在沥青路面施工中,接缝处理是一个至关重要的环 节,它直接影响到路面的整体平整度和密实度。(1)对 于纵向接缝,通常采用热接缝的处理方式。在相邻两幅 摊铺时,前一幅摊铺完成后,应留下10-20cm的宽度暂不 碾压。这样做的目的是为了与后一幅摊铺的混合料形成 热接缝,确保接缝处的混合料能够充分融合,提高接缝 的密实度和平整度。待后一幅摊铺完成后,再一起对接 缝处进行碾压, 使接缝处与路面其他部分达到相同的密 实度和平整度。(2)横向接缝则主要采用平接缝或斜接 缝的处理方式。在施工结束时,摊铺机驶离端部后,应 使用3m直尺对端部平整度进行检查。对于平整度不符合 要求的部分,应使用切割机进行切除,确保接缝处的平 整度。切除后,应在端部涂一层粘层油,以增强新旧混 合料之间的粘结力。然后,重新摊铺混合料,并注意与 新铺路面的接缝处理。(3)在碾压接缝处时,应先进行 横向碾压,再进行纵向碾压。横向碾压可以确保接缝处 的混合料充分压实,提高密实度;纵向碾压则可以使接 缝处与路面其他部分的平整度保持一致。碾压过程中, 应严格控制碾压速度和遍数,避免因过度碾压导致混合 料破碎或离析,从而影响接缝处的质量。通过专业的接 缝处理,可以确保沥青路面的整体平整度和密实度,提 高路面的使用性能和耐久性[5]。

4 施工质量控制

在沥青路面施工中,施工质量控制是确保路面质量的关键环节。(1)在施工过程中,应严格按照质量控制体系的要求进行操作。对于每一道工序,都必须进行质量检验,确保每一个环节的质量都符合设计要求和规范标准。这包括对原材料的质量检测,如沥青、集料等,必须确保其性能满足施工要求。同时,对沥青混合料的性能也要进行严格检测,包括其配合比、稳定性、流变性等指标,以确保混合料的质量符合设计要求。(2)

在施工过程中,还应加强对路面各项指标的质量检测。这包括路面的压实度、平整度、厚度等关键指标。压实度是反映路面密实程度的重要指标,必须通过现场试验和检测来确保其达到设计要求。平整度则是影响路面行驶舒适性和安全性的关键因素,必须通过专业的平整度仪进行检测。厚度则是保证路面结构强度和耐久性的基础,必须通过钻芯取样等方法进行检测。(3)为了确保施工质量的持续改进,应定期对检测数据进行分析和总结。通过数据分析,可以及时发现施工过程中存在的质量问题,并采取相应的改进措施。同时,还应严格执行质量验收制度,在施工完成后,按照相关标准和规范进行验收。对于验收不合格的部位,必须及时进行返工处理,确保整个路面的施工质量符合要求。

结语

高速公路沥青路面施工是个复杂工程,涵盖多个技术环节。从准备到设计,再到施工各环节,均需严格遵循规范。加强施工质量控制至关重要,需建立完善体系,确保质量达标。良好的施工质量和性能是高速公路长久使用的保障,也为交通运输提供优质服务。未来,技术将不断进步,沥青路面施工将更完善,为交通事业贡献力量。

参考文献

[1]王谊,谢登高,唐高华.高速公路沥青路面施工技术研究[J].运输经理世界,2022(4):8-10.

[2]张垚磊.高速公路沥青路面施工技术[J].四川建材,2020,46(2):110,116.

[3]王鹏.高速公路沥青路面施工技术探讨[J].建筑与装饰,2020(36):110.

[4]刘俊.高速公路沥青路面施工技术研究[J].运输经理世界.2023(16):23-25.

[5]游卫星.高速公路沥青路面施工技术及质量控制要点[J].工程技术研究,2021,6(7):199-200.