路桥施工中钢纤维混凝土施工技术

龙欢欢 中国五冶集团有限公司 四川 成都 611332

摘 要:钢纤维混凝土在路桥施工中应用广泛,其优异的力学性能和耐久性显著提升了工程质量和使用寿命。通过精细的材料准备、科学的搅拌工艺、高效的运输组织以及规范的浇筑与振捣技术,确保了钢纤维混凝土在路桥施工中的有效应用。针对施工中可能遇到的问题,采取严格控制材料质量、优化搅拌工艺、加强施工监控及提高施工人员技能水平等策略,进一步保障了施工质量和安全。

关键词:路桥施工;钢纤维混凝土;施工技术

引言

随着交通基础设施建设的快速发展,路桥工程对材料性能的要求日益提高。钢纤维混凝土作为一种新型复合材料,因其高强度、高韧性和良好的抗裂性能,在路桥施工中得到了广泛应用。本文旨在探讨路桥施工中钢纤维混凝土的施工技术,分析其在材料准备、搅拌、运输、浇筑与振捣等关键环节的操作要点,并提出相应的应对策略,以期为路桥施工提供技术参考。

1 钢纤维混凝土概述

钢纤维混凝土是一种在普通混凝土基体中均匀掺入 短而细的钢纤维所形成的复合材料。这些钢纤维一般具 有较高的抗拉强度和弹性模量, 直径通常在0.15-0.75mm 之间,长度在15-60mm范围,通过特定工艺均匀分散于混 凝土内部。钢纤维的加入改变了混凝土内部的应力分布 状态,极大地提升了混凝土的性能。从力学性能来看, 钢纤维混凝土相较于普通混凝土,其抗拉强度得到显著 提高。在承受拉力时,钢纤维能够有效阻止混凝土内部 裂缝的产生与扩展,承担部分拉应力,使混凝土结构在 受拉状态下表现更为优异。在弯曲韧性方面,钢纤维混 凝土的表现同样出色, 当混凝土受弯时, 钢纤维起到增 强和增韧作用,显著提高了混凝土的弯曲承载能力,延 长了其破坏过程, 使结构在破坏前有明显的变形预兆, 增强了结构的安全性。在耐久性上,钢纤维的掺入改善 了混凝土内部的微观结构。由于钢纤维的阻裂作用,减 少了混凝土内部孔隙与裂缝的连通性,降低了外界侵蚀 介质如水、氯离子等侵入混凝土内部的速度,从而提高 了混凝土的抗渗性、抗冻性等耐久性指标,延长了混凝 土结构的使用寿命。钢纤维混凝土因其独特性能,在建 筑工程、道路桥梁工程、水利工程等众多领域有着广泛 应用。在建筑工程中,可用于高层建筑的基础、梁、板 等结构构件,增强结构的承载能力与抗震性能;在道路 桥梁工程里,应用于机场跑道、高速公路路面、桥梁桥面铺装等,提高路面的抗疲劳性能和抗冲击性能,减少路面裂缝和坑槽等病害;在水利工程中,用于水工结构如大坝、溢洪道等部位,提升结构的抗冲刷和抗裂能力。随着材料科学的不断发展,钢纤维混凝土的性能将持续优化,应用前景也将更加广阔。

2 路桥施工中钢纤维混凝土的施工技术

2.1 材料准备技术

钢纤维作为关键增强材料, 其质量直接影响混凝土 性能。需选用抗拉强度高、与水泥基材料粘结性良好的 钢纤维, 其外形多为平直或异形, 以确保在混凝土中均 勾分散且有效传递应力。钢纤维的直径与长度规格应严 格按设计要求把控,通常直径在0.2-0.6mm,长度在20-60mm, 长径比宜控制在40-100之间。水泥作为胶凝材 料,要选用强度等级合适、安定性好的品种,一般对于 重要路桥工程多采用42.5级及以上的硅酸盐水泥或普通 硅酸盐水泥, 其质量应符合相关标准, 确保水化反应充 分,为混凝土提供足够强度与耐久性。骨料分粗骨料与 细骨料。粗骨料应选用质地坚硬、级配良好的碎石,最 大粒径不宜超过钢纤维长度的2/3,这样可避免在搅拌 过程中对钢纤维造成损伤,且能保证混凝土内部结构的 紧密性。细骨料则以天然河砂为佳, 其颗粒级配、含泥 量等指标需严格控制,含泥量过高会降低混凝土的和易 性与强度, 良好级配的河砂有助于提高混凝土的工作性 能, 使钢纤维能更均匀地分布其中, 共同形成稳定的结 构体系, 为后续施工环节奠定坚实基础[1]。

2.2 搅拌技术

搅拌过程是实现钢纤维均匀分散于混凝土中的关键步骤。投料顺序至关重要,一般先将水泥、骨料投入搅拌机干拌一段时间,使物料初步混合均匀,形成相对稳定的物料体系,随后加入钢纤维,持续搅拌,让钢纤维

在骨料与水泥的间隙中逐渐分散。在此阶段,要密切观察钢纤维的分散情况,防止出现结团现象。当钢纤维初步分散后,再加入适量水进行湿拌,通过水的作用使水泥充分水化,进一步增强各物料间的粘结力,同时也能更好地包裹钢纤维,确保其均匀分布在混凝土浆体中。搅拌时间需精准控制,过短则钢纤维分散不充分,过长不仅会影响生产效率,还可能导致钢纤维因过度搅拌而受损,降低其增强效果。通常情况下,总搅拌时间比普通混凝土要适当延长,一般在3-5分钟左右,但具体时长还需根据搅拌机类型、物料配合比等实际情况经试验确定。在搅拌过程中,搅拌机的转速也需合理调整,低速搅拌有助于物料初步混合,高速搅拌则可促使钢纤维更均匀地分散,但过高转速可能对钢纤维造成破坏,需在实践中找到最佳平衡点,以保证搅拌出的钢纤维混凝土具有良好的工作性能与力学性能。

2.3 运输技术

钢纤维混凝土在运输过程中, 保持其均匀性与和易 性是重点。由于钢纤维的存在, 混凝土的流动性较普通 混凝土有所降低,搅拌时阻力增大,且更容易出现离析 现象。因此,应选用合适的运输设备,如搅拌运输车, 其在运输过程中可缓慢转动搅拌筒,持续对混凝土进行 搅拌, 防止物料沉淀与钢纤维聚集。在装料前, 搅拌筒 内应保持清洁、湿润,避免残留杂物影响混凝土质量。 运输路线要合理规划,尽量减少运输时间与颠簸程度。 过长的运输时间会使混凝土水分蒸发, 坍落度损失过 大,影响施工性能;频繁的颠簸则可能导致钢纤维与骨 料分离,破坏混凝土的均匀性。在运输途中,若因交通 等原因导致运输时间过长,可适当添加适量减水剂等外 加剂,以保持混凝土的和易性,但需严格控制外加剂的 掺量,避免对混凝土强度等性能产生负面影响。到达施 工现场后,应及时卸料,卸料前先让搅拌筒高速旋转1-2 分钟, 使混凝土再次均匀混合, 确保浇筑时混凝土的质 量稳定,满足路桥施工对钢纤维混凝土的各项要求[2]。

2.4 浇筑与振捣技术

浇筑前,需对模板及基层进行严格检查与清理。模板应具有足够的强度、刚度与稳定性,确保在浇筑过程中不会变形、漏浆,其表面要光滑平整,涂有脱模剂以便于混凝土脱模。基层要坚实、平整,无杂物与积水,必要时进行洒水湿润,增强基层与混凝土的粘结力。浇筑时,要分层分段进行,每层厚度不宜过大,一般控制在30-50cm,这样有利于振捣密实,避免出现漏振或过振现象,要注意控制浇筑速度,保持混凝土浇筑的连续性,防止出现冷缝。振捣是保证钢纤维混凝土密实度的

关键操作。宜采用插入式振捣器与平板振捣器相结合的方式。先用插入式振捣器对混凝土内部进行振捣,振捣棒要快插慢拔,按一定间距均匀插入,确保振捣深度达到下层混凝土5-10cm,使上下层混凝土充分融合。振捣过程中,要避免振捣棒触碰钢纤维,防止钢纤维移位或折断。使用平板振捣器对混凝土表面进行振捣,使表面平整、泛浆,进一步排除表面气泡,提高混凝土表面质量。振捣时间以混凝土不再显著下沉、表面不再出现气泡且开始泛浆为准,通过精准的振捣操作,使钢纤维混凝土内部结构紧密,充分发挥钢纤维的增强作用,提升路桥结构的整体性能与耐久性。

3 路桥施工中钢纤维混凝土施工技术的应对策略

3.1 严格控制材料质量

(1)钢纤维作为核心增强材料,其质量直接关乎混 凝土性能。需对钢纤维的材质、形状与尺寸精度严格把 控。材质应选用高强度、耐腐蚀钢材。形状上, 异形钢 纤维如端钩形、波纹形等比直形钢纤维粘结锚固性能 更优。要精确控制钢纤维的长度、直径等尺寸, 避免因 尺寸偏差大,影响其在混凝土中的分散均匀性与增强效 果。(2)水泥的选择至关重要,要依据工程所处环境 与设计强度要求,挑选合适品种与强度等级。在一般路 桥工程中,普通硅酸盐水泥应用广泛,其具有较好的水 化热性能与后期强度增长特性。对于有抗渗、抗冻要求 的部位, 需选用相应特性的水泥。严格控制水泥的安定 性、凝结时间等指标,不合格水泥坚决杜绝使用,防止 混凝土出现开裂、强度不足等质量问题。(3)骨料的质 量也不容忽视, 粗细骨料的颗粒级配、含泥量、坚固性 等指标,影响着混凝土的和易性、强度与耐久性。粗骨 料宜选用连续级配的碎石, 其形状接近立方体, 空隙率 小,可提高混凝土的密实度。细骨料以中砂为宜,通过良 好的级配搭配,使骨料间相互填充,减少水泥用量,提高 混凝土的工作性能。严格控制骨料含泥量,含泥量过高 会降低骨料与水泥浆的粘结力,导致混凝土强度下降。

3.2 优化搅拌工艺

(1)合理的投料顺序对钢纤维在混凝土中的分散效果影响显著。先将粗细骨料投入搅拌机,干拌一定时间,形成稳定的骨料骨架。再投入钢纤维,继续干拌,促使钢纤维初步分散。最后加入水泥与水,进行湿拌,使水泥浆充分包裹骨料与钢纤维,形成均匀的混凝土拌合物。这种投料顺序可有效提高钢纤维的分散性,增强混凝土的性能。(2)搅拌时间需精准控制,过短无法使各种材料充分混合均匀,过长则可能导致钢纤维受损、混凝土离析。根据搅拌机类型、容量及混凝土配合比,

通过试验确定最佳搅拌时间。一般情况下,强制式搅拌机的搅拌时间相对较短,自落式搅拌机搅拌时间稍长。在搅拌过程中,密切观察混凝土的和易性、钢纤维分散情况,适时调整搅拌时间,确保拌合物质量。(3)搅拌速度也不容忽视,合适的搅拌速度既能保证材料充分混合,又能避免因速度过快对钢纤维造成损伤。对于强制式搅拌机,搅拌叶片的线速度应控制在一定范围内,保证搅拌叶片对物料有足够的剪切、挤压与翻转作用,促使钢纤维均匀分散,同时防止钢纤维被打断或弯折。对于自落式搅拌机,鼓筒转速要适中,使物料在筒内充分翻滚混合^[3]。

3.3 加强施工监控

(1) 在混凝土浇筑过程中, 需对浇筑温度进行实时 监测。温度过高会加速水泥水化反应,导致混凝土坍落 度损失快,增加施工难度,还可能产生裂缝;温度过低 则水化反应缓慢,强度增长受阻。通过设置温度监测 点,使用温度计或传感器测量温度,并根据环境温度与 混凝土性能要求, 采取相应温控措施, 如原材料降温、 加热水搅拌等。(2)混凝土的坍落度是反映其和易性 的关键指标,直接影响施工操作与混凝土质量。在施工 现场,每车混凝土卸料前,使用坍落度筒进行坍落度检 测。若坍落度不符合设计要求,需分析原因并及时调 整,如因搅拌时间不足、用水量偏差等导致,可适当延 长搅拌时间、调整水灰比。对于坍落度损失过大无法满 足施工要求的混凝土,严禁使用,防止出现蜂窝、麻面 等质量缺陷。(3)振捣是保证混凝土密实度的重要环 节,需对振捣过程严格监控。振捣时间不足,内部存气 泡、孔洞,影响强度与耐久性;振捣过长,则混凝土易 离析。采用插入式振捣棒时,要控好插入深度与时间, 快插慢拔, 至表面无气泡、泛浆。平板振捣器适用于大 面积振捣,要保证移动间距合理,覆盖全面。确保混凝 土振捣密实。

3.4 提高施工人员技能水平

(1)施工人员需充分熟悉钢纤维混凝土的特性。了 解钢纤维对混凝土强度、韧性等性能的增强原理,掌握 钢纤维在混凝土中的分散要求与影响因素。明白不同配 合比的钢纤维混凝土在施工操作上的差异,如不同水灰 比、钢纤维掺量对混凝土和易性、凝结时间的影响,以 便在施工过程中根据实际情况合理调整操作方法。(2) 熟练掌握钢纤维混凝土施工的各项操作流程。从材料的 计量、搅拌、运输,到混凝土的浇筑、振捣、养护,每 个环节都有严格的操作规范。例如,在搅拌环节,要能 准确按照投料顺序与搅拌时间进行操作; 在浇筑振捣 时, 能根据不同部位与施工条件, 选择合适的振捣设备 与振捣方式,确保施工质量符合标准。(3)具备一定的 问题处理能力。在施工过程中, 难免会遇到各种突发状 况,如混凝土坍落度异常、钢纤维结团等。施工人员要 能及时发现问题,并分析原因,采取有效的解决措施。 如遇钢纤维结团, 能通过调整搅拌工艺、增加搅拌时间 等方法进行处理; 面对混凝土离析现象, 能迅速判断原 因,通过调整配合比、加强搅拌等手段解决,保障施工 顺利进行[4]。

结语

综上所述,钢纤维混凝土在路桥施工中的应用具有显著优势,其施工技术的掌握与提升对于确保工程质量至关重要。通过严格控制材料质量、优化搅拌工艺、加强施工监控以及提高施工人员技能水平等措施,可以有效解决施工中存在的问题,提升钢纤维混凝土在路桥工程中的应用效果。未来,随着技术的不断进步和创新,钢纤维混凝土在路桥施工中的应用前景将更加广阔。

参孝文献

- [1]刘磊,胡园萌.路桥施工中钢纤维混凝土施工技术应用[J].建筑与装饰,2024(22):187-189.
- [2]王志平.路桥施工中钢纤维混凝土施工技术[J].全面腐蚀控制,2023,37(5):61-63.
- [3]魏强.路桥施工中钢纤维混凝土施工技术分析[J].黑龙江交通科技,2021,44(8):198-199.
- [4]陆飞跃.路桥施工中钢纤维混凝土施工技术应用[J]. 运输经理世界,2021(19):160-162.