动态控制下城市轨道交通通信资源分配

贺 健 重庆轨道交通运营有限公司 重庆 400020

摘 要:本文探讨了城市轨道交通通信系统的构成、功能及常用技术,并针对通信资源分配问题,提出了动态控制原理与其结合的策略。通过分析动态控制在通信资源分配中的适用性,以及动态控制策略与通信资源分配机制的融合方式,揭示了实现资源动态、高效分配的关键技术,为城市轨道交通通信资源的优化分配提供了理论支持和实践指导。

关键词:城市轨道交通;通信系统;动态控制;资源分配;智能决策

引言:随着城市轨道交通的快速发展,通信系统的稳定性和效率成为保障运营安全、提升乘客体验的关键因素。通信资源的合理分配,是确保通信系统高效运行的基础。本文旨在探讨动态控制原理在城市轨道交通通信资源分配中的应用,以期实现资源的动态、高效、公平分配。

1 城市轨道交通通信系统基础

1.1 系统构成与功能

城市轨道交通通信系统由多个关键部分协同运作, 共同支撑通信网络运行。传输系统作为通信网络的核心 骨架,负责将各类信息在不同地点间高效传递。该系 统通常采用光纤作为传输媒介, 凭借其高带宽、低衰减 的特性,确保信息能够高速、准确地到达目的地。通信 系统包含多个子系统,包括无线系统、光电缆系统、视 频监视系统、广播系统、时钟系统、公务系统、专用系 统、运营信息系统、乘客信息系统、车载通信系统等。 这些子系统各司其职, 为乘客提供到站信息、实时广 播、标准时钟等服务,提升乘客的乘坐体验[1]。无线系 统和视频监视系统通过数据通信系统将信息上传至控制 中心, 使工作人员能够实时获取运营信息, 确保轨道交 通系统的顺畅运行。交换系统作为通信网络的智能中 心,负责根据目的地址对信息进行路由和转发。该系统 采用高性能的交换机和路由器,能够快速处理大量数据 流量,确保信息的实时性和准确性。交换系统具备强大 的故障恢复能力,在设备故障时能够迅速切换至备用路 径,保证通信网络的连续性和稳定性。数据通信系统作 为信息处理中心,负责收集、处理和分析来自各个终端 设备的数据,为运营决策提供支持。该系统包括数据库 服务器、应用服务器等设备,通过高效的数据处理算法 和强大的存储能力,确保数据的准确性和可用性。这些 系统相互作用,共同构成城市轨道交通通信网络的整体 功能。

1.2 通信技术在轨道交通中的应用

当前,轨道交通中常用的通信技术包括无线通信技 术、光纤通信技术和以太网技术等。这些技术在轨道交 通系统中发挥着举足轻重的作用。无线通信技术以其 灵活、便捷的特点,在轨道交通中得到了广泛应用。通 过无线通信技术, 列车与地面之间可以实现实时的信息 交互,如列车位置、速度、信号状态等。这提高了列车 运行的安全性。光纤通信技术则以其高带宽、低衰减的 特性,成为轨道交通传输系统的首选。通过光纤通信技 术,大量的信息可以在不同地点之间进行高速、准确的 传递, 为轨道交通系统的运行提供了有力的支撑。以太 网技术则以其开放、标准的特点, 在轨道交通数据通信 系统中发挥着重要作用。通过以太网技术,不同厂商的 设备可以实现互联互通,为数据通信系统的建设和维护 提供了便利。以太网技术还支持多种网络协议和应用, 为轨道交通系统的信息化、智能化发展提供了广阔的 空间。

1.3 通信资源分配原则

在轨道交通通信系统中,通信资源的分配是一个重要的问题。为了确保通信网络的顺畅运行和高效利用,需要遵循一定的分配原则^[2]。公平性是通信资源分配的基本原则之一。要求所有用户都能够平等地访问和使用通信网络,避免出现资源垄断或浪费的情况。为了实现公平性,通信系统通常采用动态分配机制,根据用户的需求和网络的实际情况进行资源的分配和调整。效率性也是通信资源分配的重要原则。要求通信网络能够高效地利用有限的资源,满足尽可能多的用户需求。为了实现效率性,通信系统需要采用先进的算法和技术,对资源进行优化配置和管理,提高资源的利用率和效益。可靠性是轨道交通通信系统必须考虑的重要因素。要求通信网络能够在各种复杂环境下保持稳定运行,确保信息的准确传递和处理。为了实现可靠性,通信系统需要采用

冗余设计、故障切换等技术手段,提高网络的抗故障能力和恢复能力。可扩展性则是通信资源分配的未来发展方向。要求通信网络能够适应未来技术的发展和用户需求的变化,具备灵活扩展和升级的能力。为了实现可扩展性,通信系统需要采用模块化设计、标准化接口等技术手段,降低系统的复杂性和耦合度,提高系统的灵活性和可维护性。

2 动态控制原理与通信资源分配的结合

2.1 动态控制原理

动态控制是一种依据系统当前与未来状态,实时调 整策略以达成目标的方法,强调动态监测与实时反馈, 通过持续调整控制参数, 使系统适应环境及内部状态变 化。反馈控制是动态控制的核心原理之一,在通信资源 分配中,系统可实时监测资源使用情况,依据反馈信息 调整分配策略。例如,某区域通信需求骤增时,系统能 迅速增加该区域资源,满足用户需求,此实时响应能力 是反馈控制的优势所在。预测控制基于对未来状态的预 测调整当前策略。在通信领域,系统可利用历史数据和 算法模型, 预测未来一段时间的通信需求变化, 提前调 整资源分配,以应对通信高峰。这种前瞻性策略有助于 优化资源使用,提升系统效率。自适应控制则能根据系 统状态变化自动调整参数。在通信资源分配中,系统可 实时监测网络状态,如带宽利用率、延迟、丢包率等, 依据状态信息自动调整分配策略。这种自适应性使系统 能更好地应对网络波动和不确定性, 保持通信服务的稳 定性和可靠性。这些动态控制原理在通信资源分配中展 现出广泛的应用潜力。通过实时监测与反馈,系统可及 时调整资源分配,满足不断变化的通信需求;通过预测 控制,系统可优化资源使用,提升整体效率;通过自适 应控制,系统可有效应对网络波动和不确定性,确保通 信服务的稳定[3]。这些原理共同作用,为通信资源分配提 供了灵活、高效的解决方案, 助力通信系统在复杂多变 的环境中保持稳定运行。

2.2 动态控制在通信资源分配中的适用性分析

动态控制技术在通信资源分配中展现出独特优势。 其核心在于实时响应能力,尤其在轨道交通通信系统中,通信需求常因列车运行、乘客流动等因素动态变化。动态控制技术能即时监测这些变动,并快速调整资源分配策略,确保用户需求得到满足。动态控制有助于资源使用的优化。借助预测控制和自适应控制机制,系统能依据历史数据和当前状态,预判未来通信需求趋势,进而提前调整资源分配。这一优化策略有效避免了资源的浪费和闲置,显著提升了资源利用率。动态控制 还具备出色的故障恢复能力。轨道交通通信系统中,设备故障或网络中断时有发生。动态控制技术能实时监控网络状态,一旦检测到故障或中断,即迅速切换至备用路径或调整资源分配策略,确保通信服务的连续性和稳定性不受影响。在轨道交通通信系统的实际应用中,动态控制技术的场景广泛。列车运行过程中,通信需求随列车位置和乘客数量变化而波动,动态控制技术能实时监测并调整基站和无线接入点的资源分配,满足列车和乘客的通信需求。车站、控制中心等关键区域,动态控制技术也能根据实时通信需求灵活调整资源,确保通信服务的顺畅和高效运行。

2.3 动态控制策略与通信资源分配机制的融合

将动态控制策略与通信资源分配机制相结合,是实 现资源动态、高效分配的关键。在策略设计方面,需要 综合考虑系统目标、约束条件、控制参数等多个因素。 例如,可以设定资源利用率、通信质量、故障恢复时 间等目标,并根据这些目标制定相应的控制策略。在 算法实现方面,需要选择适合的算法模型和优化方法。 例如,可以利用机器学习算法对历史数据进行挖掘和分 析,预测未来通信需求的变化;可以利用优化算法对资 源分配策略进行优化和调整,以提高资源利用率和系统 效率。在系统架构方面,需要设计灵活、可扩展的系统 架构,以适应动态控制策略的实施。例如,可以采用模 块化设计思想,将系统划分为多个相对独立的模块,每 个模块负责特定的功能或任务;可以采用标准化接口和 协议,实现不同模块之间的互联互通和协同工作。通过 策略设计、算法实现和系统架构的融合,可以构建出具 备动态控制能力的通信资源分配系统[4]。这样的系统能够 实时监测通信需求的变化, 优化资源使用, 应对网络波 动和不确定性,保持通信服务的稳定性和可靠性。这样 的系统还具备灵活性和可扩展性, 能够适应未来技术的 发展和用户需求的变化。

3 动态控制下通信资源分配的关键技术

3.1 实时监测与数据分析技术

实时监测系统的构建是通信资源动态分配的基础。 这一系统需要能够全面、准确地收集网络中的各种数据,包括但不限于信号强度、传输速率、设备负载、用户行为等。数据采集环节通常依赖于分布在网络各处的传感器和监测设备,它们以一定的频率收集数据,并通过专用的通信渠道将数据传输至数据中心。数据处理是实时监测系统中的关键环节。由于原始数据量巨大,且往往包含噪声和冗余信息,因此需要对数据进行清洗、过滤和压缩,以提取出有价值的信息。这一过程可能涉 及数据预处理技术,如数据平滑、异常值检测、缺失值填充等。处理后的数据将被存储在高效的数据库中,以便后续的分析和查询。数据存储方面,需要采用分布式存储架构来应对海量数据的挑战。这种架构能够将数据分散存储在多个节点上,提高数据的可读性和可写性,同时保证数据的安全性和可靠性。为了支持实时数据分析,数据库系统还需要具备高速的数据检索能力。数据分析是实时监测系统的核心。通过对处理后的数据进行深入挖掘,可以揭示网络运行的规律、预测未来的趋势,并为资源分配提供决策支持。数据分析方法包括统计分析、数据挖掘、机器学习等。基于这些分析,可以构建预测模型,如时间序列分析模型、回归分析模型等,用于预测网络负载、用户行为等关键指标的变化。

3.2 智能决策算法与模型

在动态控制下,通信资源的分配需要依赖于智能决 策算法和模型。这些算法和模型能够根据实时监测和分 析得到的数据, 自动调整资源分配策略, 以适应网络的 变化。机器学习是智能决策算法的重要基础。通过训练 大量的历史数据, 机器学习算法能够学习到网络运行的 规律和模式,并据此预测未来的资源需求。例如,可以 利用监督学习算法来预测特定时间段内的网络流量,或 者利用无监督学习算法来发现网络中的异常行为。基于 优化的资源调度模型也是智能决策的重要组成部分。这 些模型通常将资源分配问题抽象为数学优化问题,通过 求解优化问题来找到最佳的资源分配方案。优化目标可 能包括最大化网络吞吐量、最小化延迟、平衡设备负载 等。为了求解这些优化问题,可以采用各种优化算法, 如贪心算法、动态规划、遗传算法等[5]。算法设计和模型 构建是智能决策算法与模型开发的关键步骤。算法设计 需要考虑算法的效率、准确性和可扩展性;模型构建则 需要确保模型能够准确反映网络的实际情况,并能够适 应网络的变化。参数调整也是不可忽视的环节,它直接 影响到算法和模型的性能。

3.3 动态资源调度与执行技术

动态资源调度与执行技术,是确保通信资源能够按 照智能决策算法和模型的指示进行分配的关键。这一技 术涉及资源调度策略的制定与实施, 以及执行系统的 响应与调整。资源调度策略的制定需要综合考虑网络的 当前状态、未来的需求预测以及资源的可用性。调度策 略可能包括基于优先级的调度、基于负载均衡的调度、 基于服务质量的调度等。选择合适的调度算法是制定有 效调度策略的关键,算法需要能够平衡各方面的需求, 并确保资源的公平分配。调度周期的确定也是资源调度 中的重要问题。调度周期过长可能导致资源分配无法及 时响应网络的变化,而调度周期过短则可能增加系统的 开销。需要根据网络的实际情况和需求来合理确定调度 周期。执行系统的响应与调整是动态资源调度的最后一 环。执行系统需要能够准确、快速地响应调度指令,并 调整资源的分配状态。这可能需要依赖于高效的通信协 议、快速的数据处理能力和灵活的资源管理机制。执行 系统还需要具备自我修复和自我优化的能力, 以应对可 能出现的故障和性能下降。

结束语

动态控制原理在城市轨道交通通信资源分配中的应用,为实现资源的动态、高效、公平分配提供了有力支持。通过实时监测与数据分析、智能决策算法与模型以及动态资源调度与执行等关键技术,可以构建出适应未来技术发展和用户需求变化的通信资源分配系统。这将有助于提升轨道交通通信系统的稳定性和效率,为乘客提供更加优质的出行体验。

参考文献

- [1]王拓辉.基于通信的城市轨道交通信号与控制系统研究[J].时代汽车,2023(8):186-188.
- [2]黄聪.基于通信技术的城市轨道交通信号控制系统研究[J].中国新通信,2021,23(23):7-9.
- [3]谢润泽.基于通信的城市轨道交通信号控制系统研究[J].中国新通信,2019,21(18):13-14.
- [4]杜建新.城市轨道交通车车通信信号系统的控制思想[J].城市轨道交通研究,2016,19(S2):21-23.
- [5] 蒋海林, 邵颖霞, 赵红礼. 5G通信系统在城市轨道交通车地通信中的应用分析[J]. 都市快轨交通, 2021(2):42-47.