高速公路机电设备智能运维研究

张江浩

太旧高速公路管理(太原)有限公司 山西 太原 030000

摘 要:本文探讨高速公路机电设备智能运维。阐述智能运维依托前沿技术构建全生命周期管理体系,具有实时、自动、精准、预防性特征,从状态感知、数据分析、决策执行三维度构成。分析关键技术,包括设备状态监测、故障诊断与预测、智能决策与优化。指出面临技术、管理、经济层面挑战,并提出技术融合创新、管理体系升级、经济模式探索等优化路径。

关键词: 高速公路; 机电设备; 智能运维; 关键技术; 优化路径

引言:高速公路作为交通动脉,其机电设备稳定运行至关重要。传统运维模式弊端渐显,难以满足高效、精准运维需求。智能运维凭借物联网、大数据、人工智能等技术,为机电设备运维带来新契机。它能实时监测设备状态、精准诊断故障、提前规划维护,有效提升运维效率与质量。研究高速公路机电设备智能运维,对保障高速公路安全畅通、降低运维成本具有重要意义。

1 高速公路机电设备智能运维的核心

1.1 智能运维的定义与特征

智能运维依托物联网、大数据、人工智能等前沿技 术,构建起覆盖设备全生命周期的管理体系。其核心在 于通过传感器网络实时采集设备运行数据,运用算法模 型深度分析数据规律, 实现对机电设备状态的动态监测 与故障预判。不同于传统被动式运维模式,智能运维以 数据驱动决策,突破人工巡检的时空限制,对设备异常 状态进行毫秒级响应,将运维工作从"故障后维修"转 向"隐患前干预"。智能运维具备四大核心特征。实时 性体现在数据采集与分析的即时性,设备运行参数如电 压波动、转速变化等信息经网络实时传输至管理平台, 确保运维人员第一时间掌握设备状态。自动化贯穿运维全 流程,从数据采集、分析到维护指令下发均由系统自动完 成,减少人为操作失误与响应延迟[1]。精准化依赖算法模 型对海量数据的深度挖掘,通过识别设备运行特征与故 障模式的关联性,实现故障类型、位置及发展趋势的精 确判断。预防性维护则基于故障预测结果,提前制定维 护计划,避免突发故障导致的交通中断与经济损失。

1.2 智能运维的维度构成

状态感知层作为智能运维的基础,由多类型传感器构建起立体监测网络。振动传感器捕捉设备机械部件的异常震动,判断轴承磨损或齿轮啮合故障;温度传感器实时监测关键部位温升,预警过载或散热异常;电流

传感器分析电力参数波动,识别电路短路或接触不良隐 患。这些传感器以高频率采集设备运行数据,通过有线 或无线通信技术将信息传输至数据中心, 为上层分析提 供原始数据支撑。数据分析层是智能运维的核心大脑, 集成故障诊断算法与健康评估模型。机器学习算法对历 史故障数据进行特征提取,建立设备故障模式识别模 型, 当监测数据出现相似特征时触发预警。深度学习模 型则通过构建多层神经网络, 自动挖掘数据间复杂的非 线性关系,实现设备剩余使用寿命预测。健康评估模型 综合设备运行参数、环境因素及历史维护记录,对设备 健康状态进行量化评分,为运维决策提供科学依据。决 策执行层将分析结果转化为具体运维行动。基于设备健 康评分与故障预测结果,系统自动优化维护策略,针对 轻微异常制定渐进式监测方案,对严重隐患生成紧急维 修工单。智能调度功能根据维护任务优先级与资源分 布, 自动分配人力、设备及备件, 生成最优维护路径。 远程控制模块支持运维人员通过网络对设备进行参数调 整、程序升级等操作,实现非接触式故障排除,减少现 场作业时间与安全风险,保障高速公路机电设备持续稳 定运行。

2 高速公路机电设备智能运维的关键技术

2.1 设备状态监测技术

设备状态监测技术通过多源传感器融合与高效的数据传输处理,构建起设备运行信息感知网络。环境传感器与设备本体传感器协同作业,前者监测温湿度、光照、粉尘等外部环境因素,后者实时捕捉设备振动、电流、电压等内部运行参数。不同类型传感器采集的信息相互补充,全面反映设备运行状态,例如环境温湿度变化可能影响设备散热性能,结合本体传感器的温度数据,可更精准判断设备运行状况。实时数据传输与边缘计算进一步提升监测时效性。借助5G等高速通信技术,

传感器采集的信息快速上传至系统。边缘计算设备部署在靠近数据源的网络边缘,对数据进行预处理与分析,过滤无效信息、提取关键特征,减少传输至云端的数据量,降低数据传输延迟。遇到紧急异常情况时,边缘计算设备能立即触发预警,实现快速响应,避免因数据往返云端处理导致的时间延误。

2.2 故障诊断与预测技术

故障诊断与预测技术基于历史数据挖掘设备故障规律。通过对设备历史运行数据、故障记录的分析,运用异常检测算法识别数据中的异常波动,捕捉偏离正常运行模式的信号。趋势分析则研究设备参数随时间的变化趋势,判断性能退化方向,提前发现潜在故障隐患。如分析设备电流数据的长期变化趋势,可预测电气部件老化程度^[2]。剩余使用寿命预测(RUL)与健康管理(PHM)模型对设备健康状况进行量化评估。综合设备当前运行状态、历史数据及相似设备故障案例,构建数学模型预测设备剩余可用时间。健康管理模型则持续跟踪设备健康状态变化,划分不同健康等级,针对不同等级制定差异化维护策略,在设备性能下降初期及时介入维护,避免故障扩大化。

2.3 智能决策与优化技术

智能决策与优化技术实现维护工作的科学规划。维护任务优先级排序与资源分配算法根据设备故障风险等级、重要程度及维护资源情况,对维护任务进行优先级划分。关键路段的收费设备、监控设备故障可能严重影响交通运行,优先安排维护;普通路段辅助设备故障则结合资源情况灵活安排。自适应维护策略生成功能根据设备实时状态动态调整维护计划。当设备运行状态良好时,适当延长维护周期;检测到设备出现轻微异常但不影响正常运行时,制定针对性的预防性维护措施;若设备故障风险升高,则立即启动紧急维护程序,确保维护策略始终契合设备实际需求,提升运维效率与资源利用率。

3 高速公路机电设备智能运维的挑战分析

3.1 技术层面挑战

设备异构性与数据兼容性问题成为智能运维技术落 地的阻碍。高速公路机电设备来源广泛,不同厂商生产 的设备在通信协议、数据格式上存在显著差异。监控摄 像头、收费系统终端、照明控制设备等各自遵循独立标 准,导致数据采集后无法直接整合分析。统一的数据转 换与解析接口缺失,增加系统开发难度与运行复杂度, 影响数据交互效率和运维系统的整体性能。复杂环境对 传感器可靠性提出严苛要求。高速公路沿线环境多变, 高温、高湿气候易使传感器内部电路受潮、老化,降低 检测精度;隧道、桥梁等特殊路段存在的电磁干扰,会导致传感器信号失真、数据异常。传感器长期暴露于灰尘、盐雾等恶劣条件下,机械部件磨损加速,若不能及时维护或更换,采集的数据将失去参考价值,直接影响设备状态监测准确性和故障预测可靠性。

3.2 管理层面挑战

运维人员技能转型是智能运维落地的关键障碍。传统运维依赖人工经验判断设备故障,而智能运维要求人员掌握物联网、数据分析、智能系统操作等新知识和技能。从设备基础检修到算法模型解读、系统平台管理,知识体系跨度大,人员培训周期长、难度高。部分运维人员受固有工作模式限制,对新技术接受度低,难以快速适应智能化运维流程,导致技术与人力衔接不畅^[3]。多部门协同与数据共享机制缺失影响运维效率。交通管理部门、运维团队、设备供应商之间缺乏统一协调机制,信息传递存在壁垒。故障发生时,管理部门的通行调度需求与运维团队的检修计划可能产生冲突;设备供应商掌握的核心参数信息无法及时同步给运维方,导致故障诊断耗时长、修复方案制定缓慢。数据共享不足使各部门难以形成运维合力,无法发挥智能运维系统的协同优势。

3.3 经济层面挑战

智能运维初期投入成本高昂。传感器部署需覆盖全线设备,数量庞大;智能运维系统开发涉及硬件集成、软件编程、算法构建等多个环节,技术投入大;人员培训需聘请专业讲师、搭建模拟环境,且费用不菲。老旧设备智能化改造还需额外资金支持。高额的前期投入给运营方带来资金压力,尤其对资金有限的中小型运维企业,成为技术升级的主要制约因素。长期运维效益评估体系不完善增加决策难度。智能运维在降低故障频率、提升通行效率方面存在潜在收益,但这些收益难以量化。成本与收益在时间维度上的不对等,使得运营方难以准确判断投入产出比。缺乏科学的效益评估标准,导致部分企业对智能运维持观望态度,不敢轻易加大投入,阻碍行业整体智能化进程。

4 高速公路机电设备智能运维的优化路径

4.1 技术融合与创新

在智能运维的发展过程中,技术融合与创新是推动系统升级的核心动力。其中,数字孪生技术的应用为设备建模与仿真提供了全新的解决方案。该技术通过构建物理设备的虚拟映射模型,实现对设备运行状态的实时追踪与预测分析。例如,在隧道照明系统或收费门架的运行中,数字孪生平台可以模拟不同工况下的设备表现,帮助技术人员提前识别潜在问题,并优化维护策

略。这种基于虚拟仿真的方法不仅提升了故障诊断的准确性,也增强了系统的可预见性和可控性。与此同时,5G通信技术与物联网的结合也为数据传输带来了显著提升。高速公路沿线分布着大量机电设备,其运行数据具有规模大、更新快的特点。传统通信方式在高并发场景下容易出现延迟或丢包现象,影响系统的响应效率。而5G网络具备低时延、大带宽和广连接的优势,能够支持海量设备的稳定接入,提高数据采集与处理的速度。配合物联网终端的广泛部署,整个运维体系的数据流动更加高效,实现了从感知到决策的快速闭环。

4.2 管理体系升级

在技术不断进步的同时,管理体系的同步升级同样 至关重要。当前高速公路机电设备运维仍存在流程不规 范、知识积累不足等问题, 亟需建立一套标准化的运维 流程体系。通过制定统一的设备维护标准、故障处理流 程和应急响应机制,可以有效减少人为操作差异,提高 运维工作的规范性和一致性。同时构建运维知识库,将 常见故障处理方法、维修经验、设备参数等信息进行归 档整理, 使技术人员能够快速调取参考, 提升问题解决 效率。人才培养也是管理体系优化的重要环节[4]。随着智 能运维的深入发展,运维人员的工作内容已从传统的机 械维修向数据分析、系统操作等多维度转变。应加强从 业人员的技能培训, 使其掌握基本的数据分析方法、远 程监控操作技巧以及智能诊断工具的使用。鼓励跨学科 人才的培养,推动机电工程、计算机技术和数据科学等 领域的融合, 打造一支具备综合能力的专业团队。这不 仅有助于提升运维水平, 也能增强企业在新技术应用中 的适应能力。

4.3 经济模式探索

在经济层面,如何降低投入成本并提升投资回报率 是推广智能运维必须考虑的问题。一种可行的方式是引 人运维服务外包模式,由第三方专业机构承担部分或全 部运维工作。这种方式可以避免企业自行组建技术团队 和搭建系统的高昂成本,同时借助专业服务商的技术优 势,提升运维质量和效率。特别是在技术更新换代较快 的背景下,外包服务还能帮助企业灵活应对技术变革, 减少设备淘汰带来的资源浪费。另一种具有潜力的经济 模式是基于绩效的运维合同。不同于传统的按次收费或 固定周期维护模式,该模式根据设备的实际运行状况和 服务效果进行付费。例如,按照设备的可用性、故障响 应时间或系统稳定性等指标来衡量服务质量,并据此调 整费用。这种模式促使运维方更加关注设备的长期健康 状况,而非仅完成表面任务,从而实现更高质量的服务 交付。同时也有助于运营方更好地控制预算,平衡成本 与效益之间的关系。此外,还可以探索多元化合作机 制,如与科研机构、高校联合开展技术研发,共享成 果;或与设备制造商建立深度合作关系,在产品生命周 期内提供持续的技术支持与升级服务。这些举措有助于 形成良性循环,推动智能运维生态体系的建设,实现多 方共赢。

结束语

高速公路机电设备智能运维是行业发展的必然趋势。尽管面临技术、管理、经济等多方面挑战,但通过技术融合创新、管理体系升级以及经济模式探索等优化路径,能够逐步克服困难,提升运维水平。未来,随着技术的不断进步和应用场景的拓展,智能运维将在高速公路领域发挥更大作用,为高速公路的安全、高效运行提供坚实保障。

参考文献

[1]孙晓宁.高速公路机电设备智慧运维分析[J].工程建设与设计,2023(14):91-93.

[2]马亚栋.高速公路机电系统的智慧运维模式应用[J]. 运输经理世界,2021(30):155-157.

[3]王一晨,李荣彪.高速公路智能监测运维平台的研发与应用[J].中国交通信息化,2022(10):105-108.

[4]钟仕兴.高速公路智能机电设备运维管理系统的研究与应用[J].机电信息,2022(19):60-65.