铁路隧道衬砌背后空洞检测与注浆加固技术

赵雪飞

中铁上海工程局集团第五工程有限公司 广西 南宁 530000

摘 要:本文深入探讨了铁路隧道衬砌背后空洞检测与注浆加固技术。首先阐述了衬砌背后空洞对铁路隧道安全运行的潜在危害,强调了及时检测与加固的重要性。接着详细介绍了常见的空洞检测技术,包括地质雷达法、超声波检测法等,分析了各检测技术的原理、优缺点及适用范围。在注浆加固技术方面,系统论述了注浆材料的选择、注浆工艺的设计以及注浆效果的评价方法。通过本文的研究,旨在为铁路隧道衬砌背后空洞的检测与治理提供科学、有效的技术参考,保障铁路隧道的结构安全和稳定运行。

关键词:铁路隧道;衬砌背后空洞;检测技术;注浆加固

铁路隧道作为铁路交通的重要组成部分,其结构安全直接关系到铁路运输的畅通与安全。在铁路隧道运营过程中,由于施工缺陷、地质变化、列车振动等多种因素的影响,衬砌背后容易出现空洞现象。衬砌背后空洞会改变隧道结构的受力状态,降低衬砌的承载能力,严重时甚至可能引发衬砌开裂、掉块等病害,对铁路行车安全构成严重威胁。因此,准确检测衬砌背后空洞的位置、范围和程度,并及时采取有效的注浆加固措施,对于保障铁路隧道的结构安全和稳定运行具有重要意义。

1 铁路隧道衬砌背后空洞的危害

1.1 改变结构受力体系

在铁路隧道运营中,正常状态下衬砌与围岩协同受力,共同承担列车荷载以及围岩压力等。然而,一旦衬砌背后出现空洞,二者之间的紧密接触状态遭到破坏,围岩对衬砌的约束作用随之减弱。原本衬砌和围岩能够合理分担的各类荷载,此时不得不更多地由衬砌独自承受。这种变化使得衬砌内部的应力分布情况发生改变,原本均匀的应力状态被打破,局部区域会出现应力集中的现象,进而加速衬砌的老化进程,并增大其损坏的风险。

1.2 降低衬砌承载能力

在铁路隧道中,衬砌背后若存在空洞,会对衬砌的 承载能力产生极大负面影响。空洞会直接致使衬砌的有 效厚度缩减,如同削弱了结构的"骨架",进而降低 衬砌的整体刚度与强度。在列车荷载持续冲击以及围岩 压力不断挤压的反复作用下,衬砌难以维持原有稳定状态,极易出现裂缝、变形等病害。这些病害如同"伤口"一般,持续削弱衬砌的承载能力。若病害持续恶 化、发展到严重程度,极有可能引发衬砌坍塌等重大事 故,严重干扰铁路的正常运营秩序。

1.3 引发渗漏水问题

在铁路隧道里,衬砌背后出现空洞极易引发渗漏水问题。空洞的存在会改变地下水原有的流动路径,使地下水在空洞区域积聚,进而形成水压。随着水压不断增大,当超过衬砌自身抗渗能力时,地下水便会沿着衬砌的裂缝、孔洞等薄弱部位,渗漏至隧道内部。如此一来,隧道内会出现积水、潮湿等现象,破坏原本干燥的行车环境,给列车运行带来安全隐患。而且,渗漏水长期侵蚀隧道内的设备和设施,会加速其腐蚀老化进程,大幅缩短设备设施的使用寿命,增加维护成本。

2 铁路隧道衬砌背后空洞检测技术

2.1 地质雷达法

地质雷达法作为铁路隧道衬砌背后空洞检测的一种 无损检测手段, 其原理基于高频电磁波在介质中的传播 特性。在检测过程中,发射天线将高频电磁波射向地 下, 电磁波在介质中传播, 当遭遇不同介质的分界面, 比如衬砌与空洞的分界面时,会发生反射和折射现象。 接收天线捕捉反射回来的电磁波, 并将其转化为电信 号。通过对这些电信号进行细致的分析和处理,就能精 准确定空洞的位置、范围以及深度等关键信息。该检测 方法优势显著,具备检测速度快、效率高的特点,能在 短时间内完成大面积检测任务。而且它对隧道运营的干 扰极小, 几乎不会影响列车的正常运行。同时, 它可实 时获取检测数据,并以直观的图像形式呈现空洞分布情 况,方便现场人员迅速做出判断。不过,地质雷达法也 存在一定局限性, 其检测深度有限, 对于较深的空洞可 能难以准确检测[1]。并且,电磁波在传播时会受到金属物 体、地下水等外界因素的干扰,从而影响检测结果的准 确性。鉴于这些特性, 地质雷达法更适用于浅层衬砌背 后空洞的检测,一般检测深度在 1-3m 左右, 在铁路隧 道日常检测和维护工作中,是极为常用的检测手段。

2.2 超声波检测法

超声波检测法在铁路隧道衬砌背后空洞检测中发挥 着重要作用,其原理基于超声波于介质中的传播速度与 反射特性。检测时,将超声波发射探头与接收探头分 别置于衬砌表面,发射探头向衬砌内部发射超声波,超 声波在衬砌中前行,一旦遭遇空洞等缺陷,便会发生反 射。接收探头捕捉反射回来的超声波信号,通过深入分 析信号的传播时间、强度等关键信息,就能精准判断空 洞是否存在以及其具体位置。此检测方法优势突出,分 辨率颇高,对小尺寸空洞极为敏感,能精确检测出衬砌 内部的微小缺陷。这对于提前察觉衬砌病害、及时采取 措施防止病害恶化意义重大。然而,它也存在一定短 板,检测速度相对迟缓,需逐点进行操作,致使工作效 率较低。并且,超声波在传播期间易受衬砌材料不均匀 性、裂缝等因素干扰,进而导致检测结果出现一定误差 [2]。鉴于这些特性, 超声波检测法更适用于对衬砌质量要 求严苛、需精确检测小尺寸空洞的场景,像新建隧道的 验收检测,通过它可以严格把控隧道建设质量;还有既 有隧道衬砌病害的详细检测, 有助于全面了解隧道衬砌 的健康状况,为后续的维护和加固提供依据。

2.3 红外热成像法

红外热成像法在铁路隧道衬砌背后空洞检测中有着 独特应用, 其原理基于物体的热辐射特性。当衬砌背后 出现空洞时,由于空洞与周围围岩的热传导性能存在 差异,衬砌表面的温度分布会随之改变。红外热成像仪 能够敏锐捕捉到衬砌表面的温度差异,并将其转化为直 观的热图像。技术人员通过分析热图像中温度异常区域 的形状、大小和位置等信息, 就能判断出空洞可能存在 的位置和范围。该检测方法优势明显,采用非接触式检 测方式, 无需对衬砌进行破坏, 就能快速获取衬砌表面 的温度信息,非常适合对大面积的隧道衬砌进行快速普 查,初步判断是否存在空洞等病害,大大提高了检测效 率。不过,它也存在一定局限性,检测结果极易受环境 温度、太阳辐射等因素干扰。在环境温度波动大或太阳 辐射强烈的时段,检测准确性会大打折扣,所以需要在 适宜的环境条件下开展检测[3]。而且,红外热成像法只能 检测到衬砌表面的温度变化,对于深层空洞的检测能力 不足。因此, 在冬季或夜间等环境温度相对稳定的条件 下,使用红外热成像法进行检测能取得较好的效果,可 为后续更精准的检测和病害处理提供初步依据。

3 铁路隧道衬砌背后注浆加固技术

3.1 注浆材料的选择

在铁路隧道衬砌背后空洞注浆加固工程中, 注浆材

料的选择至关重要,不同的注浆材料具有各自的特点和适 用场景。水泥浆液作为常用的注浆材料、优势显著。其原 材料来源极为广泛,成本低廉,能有效降低工程费用。同 时,水泥浆液固化后强度高,可充分填充衬砌背后的空 洞,增强衬砌与围岩之间的粘结力,进而提升衬砌的承 载能力,保障隧道结构的稳定性。然而,它也存在一些不 足,水泥浆液的凝结时间相对较长,在需要快速加固的场 景中可能无法及时发挥作用。而且,其可注性较差,对于 一些细小的裂缝和空洞, 浆液可能难以充分渗透和填充, 导致加固效果不理想。水泥-水玻璃双液浆则综合了水泥 浆液和水玻璃溶液的优点。它由水泥浆液和水玻璃溶液按 特定比例混合而成,凝结时间可根据实际需求进行调整, 早期强度高,能快速形成加固效果。此外,其可注性好, 能够更好地渗透到衬砌背后的裂缝和空洞中, 提高注浆加 固的质量。化学浆液在注浆加固中也发挥着独特作用。它 粘度低、可注性好、凝结时间短, 能轻松填充细小的裂缝 和空洞, 尤其适用于对加固精度要求较高的工程。但化学 浆液价格较高,会增加工程成本,并且部分化学浆液可能 对环境造成污染, 在使用时必须严格控制用量和施工工 艺,确保环境安全。

3.2 注浆工艺的设计

在铁路隧道衬砌背后空洞注浆加固工程里, 注浆工 艺的设计是确保加固效果的关键环节,涵盖注浆孔布 置、注浆压力控制以及注浆顺序安排等方面。注浆孔的 布置需综合考量空洞的分布状况与衬砌的结构形式。通 常,要让注浆孔在衬砌表面均匀分布,孔距一般设定在 1-2m。要是遇到较大的空洞或者病害较为严重的区域, 就得适当加密注浆孔,以此保证浆液能够充分覆盖并填 充这些关键部位,提升加固的全面性和有效性。注浆压 力对注浆效果起着决定性作用。若注浆压力过小,浆液 难以凭借自身力量充分填充空洞,会导致加固不彻底; 而注浆压力过大,又可能使衬砌承受不住压力而出现开 裂,或者造成浆液外溢,浪费材料且影响周边环境。所 以,在注浆过程中,必须依据注浆材料的特性、空洞的 大小以及深度等因素,精准合理地控制注浆压力,一般 将其控制在 0.2 - 1.0MPa 的范围内。注浆顺序也有明确原 则,即"先下后上、先外后内"。先对衬砌底部的空洞 进行注浆填充, 因为底部是衬砌受力的关键部位, 稳固 底部能为后续加固提供基础;接着填充衬砌两侧和顶部 的空洞;同时,先处理较大的空洞,再处理较小的裂缝 和空洞, 如此安排能保证浆液在重力作用下充分填充空 洞,提高注浆的质量和效果。

3.3 注浆效果的评价方法

在铁路隧道衬砌背后空洞注浆加固工程里,准确评 价注浆效果至关重要,这关系到隧道结构的安全性和稳 定性。目前常用的评价方法有钻孔取芯法、声波检测法 和注浆压力监测法。钻孔取芯法是在注浆施工结束后, 于注浆区域选定位置钻孔取芯。通过仔细观察芯样的完 整程度以及浆液在芯样中的填充状况,同时分析芯样的 物理力学性能,如抗压强度、弹性模量等,来全面评价 注浆效果。这种方法直观且准确,能直接获取注浆区域 的实际情况。不过,钻孔取芯过程会对衬砌造成一定程 度的破坏,影响衬砌的整体性,后续还需进行修补,因 此多用于对注浆效果要求较高且允许局部破坏的检测场 景。声波检测法基于声波在介质中的传播速度和反射特 性来开展。在注浆前后,分别对衬砌进行声波检测,对 比声波传播速度和反射信号的变化。若注浆后声波传播 速度加快, 反射信号减弱, 意味着衬砌内部空洞被有效 填充, 注浆效果良好。该方法无损、高效, 不会对衬砌 造成破坏,适用于大面积的注浆效果检测。注浆压力监 测法是在注浆过程中,实时关注注浆压力的变化情况。 若注浆压力能稳定上升并达到设计要求,表明浆液能够 充分填充空洞, 注浆效果理想; 反之, 若注浆压力无法 上升或出现异常波动,可能暗示存在空洞未填充、浆液 泄漏等问题,需及时排查处理。

4 结论

铁路隧道衬砌背后空洞检测与注浆加固技术是保障 铁路隧道结构安全和稳定运行的重要手段。通过地质雷 达法、超声波检测法、红外热成像法等多种检测技术, 可以准确检测出衬砌背后空洞的位置、范围和程度。根 据检测结果,选择合适的注浆材料和注浆工艺进行注浆 加固,可以有效填充空洞,提高衬砌与围岩之间的粘结 力,增强衬砌的承载能力。在注浆加固过程中,应严格 控制注浆压力、注浆顺序等参数,确保注浆效果。同 时,采用钻孔取芯法、声波检测法、注浆压力监测法等 多种评价方法,对注浆效果进行科学、准确的评价。未 来,随着检测技术和注浆加固技术的不断发展,应进一 步加强研究,提高检测和加固的效率和精度,为铁路隧 道的安全运营提供更加可靠的保障。

参考文献

[1]穆伟. 基于地质雷达的某铁路隧道衬砌空洞检测分析 [J]. 勘察科学技术, 2019, (02): 57-60.

[2]暴学志. 隧道衬砌背后空洞自动敲击检测装置的研发[J]. 铁道建筑, 2022, 62 (11): 99-102+151.

[3] 龚伦, 仇文革, 王立川, 等. 运营铁路隧道衬砌背后较大空洞的精确检测技术 [J]. 隧道建设, 2016, 36 (12): 1507-1511.