信息技术在交通运输工程中的应用分析

田启渊

宁夏交通建设股份有限公司 宁夏 银川 750000

摘 要:信息技术与交通运输工程的深度融合,推动运输体系向高效化、智能化转型。通过智能交通系统实现流量监测与信号调控,物流信息化管理优化仓储运输环节,安全监控技术保障全流程安全,电子收费系统提升通行效率。未来,车路协同、人工智能应用、绿色交通技术及数据安全强化将成为发展方向,为构建高效、安全、环保的综合运输体系提供技术支撑,助力行业实现数字化升级与可持续发展。

关键词:信息技术;交通运输工程;应用

引言

在现代交通网络建设需求日益增长的背景下,信息 技术已成为提升交通运输工程效能的核心驱动力。当 前,运输体系面临流量激增、安全管控、绿色发展等多 重挑战,亟需借助数字化手段突破瓶颈。本文聚焦信息 技术在智能交通、物流管理、安全监控等领域的具体应 用,分析其在优化资源配置、提高运行效率中的作用, 并探讨车路协同、人工智能等前沿技术的发展趋势,为 行业实践提供技术参考与创新思路。

1 信息技术与交通运输工程概述

1.1 信息技术

信息技术,作为当今时代的关键驱动力,利用计算 机、网络、广播电视、媒体等硬件设备及软件工具与科 学方法,对文图声像各类信息展开获取、加工、存储、 传输与使用。其主体层次涵盖信息存储技术,像磁盘阵 列、云存储等技术,让数据能高效、安全地存储;信息 处理技术,借助强大的CPU运算能力与先进算法,实现 对海量数据的快速分析处理; 信息传输技术, 以5G、 光纤通信等为代表,保障信息高速、稳定传输;信息控 制技术,则通过智能控制系统,精准调控信息流程。从 发展趋势看,信息技术正朝着数字化大步迈进,使信息 能以更高效、便捷的数字形式存储与处理。多媒体化趋 势下,文字、图像、音频、视频等多种信息形式深度融 合,丰富信息呈现与交互方式。宽频化发展提升网络传输 带宽,满足大数据量、高速率的信息传输需求。智能化进 程中,人工智能技术赋能信息处理,实现智能识别、决策 与预测,极大提升信息应用效率与价值,全方位改变着生 产生活方式,为各行业创新发展提供有力支撑。

1.2 交通运输工程

交通运输工程致力于构建高效、便捷、安全的交通 运输体系,涵盖公路、铁路、水路、航空等多种运输方

式。在公路领域,从路线规划、路基路面设计施工,到交通设施建设,都需综合考量地形、交通流量等因素,打造稳固耐用、通行顺畅的公路网络。铁路工程涉及轨道铺设、机车车辆研发、站场设计等,追求高速度、大运量、准时性的运输服务。水路运输聚焦航道整治、港口建设、船舶设计运营,利用天然水系优势实现低成本、大批量货物运输。航空运输则着重于机场建设、飞机选型、空中交通管制,保障快速、远程的人员与物资运输。其目标是提升交通运输效率,通过优化运输组织、交通流量调控等手段,减少运输时间与成本。增强运输安全性,运用先进安全技术与管理措施,降低事故发生率。注重与环境的协调发展,采用环保材料、节能技术,减少交通运输对生态环境的负面影响,为经济发展提供坚实的交通运输保障,促进区域间的人员、物资与信息交流。

2 信息技术在交通运输工程中的具体应用

2.1 智能交通系统(ITS)

智能交通系统将先进的信息技术、数据通信传输技术、电子传感技术、控制技术及计算机技术等有效集成,应用于整个交通运输管理体系。在交通流量监测方面,通过在道路上部署大量传感器,收集实时交通流量数据,利用大数据分析技术预测交通拥堵状况。例如,在城市主干道及高速公路的关键节点设置地磁传感器、微波雷达传感器等,它们能精准感知过往车辆的速度、数量、车型等信息,并将这些数据实时传输至交通管理中心。经分析处理后,系统可提前为出行者规划更优路线,引导车辆避开拥堵路段,提升道路整体通行效率。智能交通信号控制系统可依据实时交通流量动态调整信号灯配时。在早晚高峰时段,根据不同方向车流量的变化,自动延长或缩短绿灯时长,减少车辆等待时间,缓解路口拥堵。车路协同技术也是智能交通系统的重要组

成部分,车辆与基础设施之间实现信息交互,车辆可提前获取道路前方的交通状况、信号灯状态等信息,提前做出决策,如自动调整车速、规划行驶路径等,增强交通的流畅性与安全性^[1]。

2.2 物流信息化管理

物流信息化管理借助信息技术对物流各环节进行高 效管控。在运输管理系统(TMS)中,利用全球定位系 统(GPS)、地理信息系统(GIS)等技术,实时跟踪 货物运输车辆的位置、行驶路线及运行状态。通过在运 输车辆上安装GPS设备,将车辆的位置信息实时回传至 物流信息平台,管理人员可在平台上直观看到车辆的动 态,准确掌握货物运输进度,若出现异常情况,如车辆 偏离预定路线、长时间停留等,能及时发出预警并采取 相应措施。在仓储管理方面,引入物联网技术,对仓库 内的货物进行智能化管理。在货物包装或货架上安装射 频识别(RFID)标签,通过读写器快速识别货物信息, 实现货物的自动盘点、出入库管理,提高仓储作业效率 与准确性,减少人工操作失误。物流信息平台整合了供 应商、制造商、经销商及客户等各方信息,实现信息共 享与协同运作,优化物流资源配置,降低物流成本。例 如,供应商可根据平台上制造商的库存及需求信息,及 时补货,减少库存积压与缺货风险。

2.3 交通运输安全监控

交通运输安全监控运用多种信息技术保障运输安 全。在公路工程建设与运营阶段,利用视频监控技术对 施工现场及道路运行状况进行实时监控。在施工现场设 置多个高清摄像头,全方位监控施工过程,及时发现安 全隐患,如工人未按规范操作、设备故障等,以便及时 纠正,确保施工安全。在道路运营中,沿道路安装的监 控摄像头可对交通违法行为进行抓拍,同时监测道路上 是否存在异常情况,如车辆碰撞、抛锚等。利用传感器 技术对交通基础设施进行健康监测, 在桥梁、隧道等关 键部位安装应力、位移、振动等传感器,实时采集结构 数据,通过数据分析评估结构的安全性,若发现结构参 数超出正常范围,及时发出预警,为维修养护提供依 据,保障道路基础设施的安全稳定运行。在运输工具方 面,为车辆、船舶等安装主动安全智能防控系统,通过 传感器监测车辆行驶状态、驾驶员行为等, 如当监测到 驾驶员疲劳驾驶、车辆超速、车距过近等危险行为时, 系统自动发出警报并采取相应措施,如自动刹车、调整 车速等,降低事故发生率[2]。

2.4 电子收费系统

电子收费系统以射频识别技术为核心,实现车辆

快速收费。以高速公路ETC系统为例,车辆安装ETC电子标签后,当车辆进入ETC车道时,车道上的路侧单元(RSU)与车辆电子标签进行通信,自动识别车辆信息,并从绑定的账户中扣除相应的通行费用,车辆无需停车即可快速通过收费站。这种方式极大地提高了收费效率,减少了车辆在收费站的停留时间,缓解了交通拥堵。电子收费系统还可与其他交通管理系统相结合,实现数据共享与协同管理。例如,与交通流量监测系统配合,根据不同时段的交通流量,对收费策略进行调整,在高峰时段适当提高收费标准,引导车辆错峰出行;与车辆管理系统对接,可实时获取车辆的相关信息,如车型、年检状态等,确保收费的准确性与合法性。电子收费系统还在不断拓展应用场景,如在城市停车场、桥梁、隧道等收费场所推广应用,为用户提供更加便捷、高效的支付体验。

3 信息技术在交通运输工程中的未来发展趋势

3.1 车路协同技术发展

(1) 在硬件设施层面,将持续升级道路基础设施的 感知与通信能力。道路上会密集部署更多类型的传感 器,如高分辨率的激光雷达、高精度的毫米波雷达以及 具备多光谱成像能力的摄像头等,以精确感知车辆、行 人、道路状况等各类信息。大力提升路侧单元(RSU) 的通信性能,支持更高频率、更大带宽的数据传输,保 障车辆与道路设施间信息交互的及时性与稳定性, 为车 路协同奠定坚实基础。(2)软件算法领域,将深入研 发先进的协同决策算法。通过融合车辆与道路设施采集 到的海量数据,运用深度学习、强化学习等智能算法, 实现车辆行驶路径规划、速度控制等决策的协同优化。 例如,在多车交汇场景下,系统能根据各车行驶意图及 道路实时状况,智能协调车辆行驶顺序与速度,避免冲 突,大幅提升交通流畅性与安全性。(3)应用场景方 面,将不断拓展车路协同的应用边界。在智能物流配送 中,配送车辆可借助车路协同系统,提前获取沿途交通 信息,实现配送路线的动态优化,提高配送效率与准时 性。在公交优先通行方面,公交车辆与路口信号灯协 同,实现公交优先通行,减少公交运行延误,提升公共 交通吸引力,促进绿色出行。

3.2 人工智能深度应用

(1)运输规划环节,人工智能将发挥关键作用。利用机器学习算法对历史运输数据、实时交通信息、经济发展趋势等多源数据进行深度分析,精准预测不同区域、不同时段的客货运需求。基于此,优化运输线路规划、运输资源配置,如合理确定公交线路、调配货运车

辆,提高运输资源利用效率,降低运输成本。(2)在运输工具智能化升级方面,人工智能助力显著。在车辆、船舶、飞机等运输工具上,搭载基于人工智能的自动驾驶辅助系统甚至完全自动驾驶系统。这些系统通过对传感器数据的实时处理,实现自动避障、自适应巡航、智能驾驶决策等功能,不仅提高运输工具的运行安全性,还能减少人为操作失误导致的能源浪费,提升运输效率。(3)运营管理中,人工智能用于构建智能运营管理体系。借助自然语言处理技术实现客服智能化,快速响应客户咨询与投诉。利用人工智能算法对运输设备进行智能运维,通过分析设备运行数据预测故障发生,提前安排维护,减少设备停机时间,保障运输服务的连续性与稳定性^[3]。

3.3 绿色交通信息技术支持

(1)在能源管理领域,信息技术将助力实现交通能源的高效利用。通过智能电网与交通系统的融合,利用大数据分析和智能控制技术,实现电动汽车等新能源交通工具的有序充电与放电管理。例如,在用电低谷期引导车辆充电,在用电高峰期车辆反向向电网供电,优化能源供需平衡,降低交通领域的能源消耗与碳排放。

(2)运输组织优化方面,信息技术发挥重要作用。利用 先进的物联网技术实时采集运输各环节数据,再运用智 能算法对这些运输任务进行精准整合与科学调度,顺利 实现货物的共同配送、客运的多式联运一体化组织。同 时通过合理规划运输路径、优化运输方式组合,减少运 输里程与空驶率,提高运输效率,降低能源消耗与环境 污染。(3)在交通基础设施建设与维护中,绿色信息 技术得到广泛应用。利用3D打印、模块化建造等新型技 术,结合信息化管理手段,实现交通基础设施建设材料 的节约与环保。在维护阶段,通过传感器监测与数据分 析,精准定位设施病害,采用针对性的修复措施,延长 设施使用寿命,减少资源浪费与环境影响。

3.4 交通运输数据安全强化

(1)数据加密技术持续创新升级。采用量子加密、 同态加密等先进加密算法,对交通运输数据进行全生命 周期的加密保护。在数据存储环节,确保数据以密文形 式存储, 防止数据被窃取或篡改。在数据传输过程中, 通过加密通道保障数据安全传输,即便数据被截获,非 法获取者也无法解读数据内容, 切实保障数据的保密 性。(2)访问控制机制不断完善。构建基于身份识别、 行为分析的多因素访问控制体系。除传统的用户名、密 码验证外,引入生物识别技术(如指纹识别、人脸识 别)、动态令牌等多种验证方式。通过实时监测用户行 为,分析行为模式是否异常,对访问权限进行动态调 整, 防止非法用户入侵与内部人员滥用权限, 保障数据 访问的安全性与合规性。(3)数据备份与恢复策略进一 步优化。建立异地多活的数据备份中心,运用分布式存 储、区块链等技术,实现数据的实时备份与冗余存储。 定期进行数据恢复演练,确保在数据遭遇灾难(如火 灾、地震、网络攻击等)丢失或损坏时,能够快速、准 确地恢复数据,保障交通运输业务的连续性与稳定性, 避免因数据丢失造成的巨大损失[4]。

结语

综上所述,信息技术为交通运输工程注入了前所未有的发展动能,从基础的信息传输与处理到智能系统的深度应用,全方位重塑了运输体系的运作模式。未来,随着技术的持续迭代,需进一步强化跨领域协同,推动车路协同硬件与算法的深度融合,探索人工智能在个性化运输服务中的创新应用,同时构建更严密的数据安全屏障。通过技术创新与实践结合,持续提升运输效率、安全与环保水平,为构建现代化综合交通运输体系提供坚实保障。

参考文献

- [1] 窦衍刚.信息技术在交通运输工程中的应用分析[J]. 工程技术研究,2025,7(6):86-88.
- [2]李林.信息技术在交通运输工程中的应用分析[J].科技创新与应用,2020(19):180-181.
- [3]祝山山.信息技术在交通运输工程中的应用分析[J]. 商品与质量,2020(43):149.
- [4]肖惠.信息技术在交通运输工程中的应用分析[J].建筑工程技术与设计,2021(6):249.