浅析水利水电工程施工现场的安全管理

段彦斌

宁夏固海水利建筑安装工程有限公司 宁夏 中卫 755100

摘 要:水利水电工程施工现场安全管理需应对复杂环境与动态风险,涵盖人员、设备、环境多维度管控。当前存在风险预判与动态管控脱节、智能化监管应用不足、人员素养与责任传导不均等问题。通过构建动态风险防控体系、推进智能化监管升级、创新安全素养培育模式及完善责任闭环机制,可实现风险主动防控。利用物联网、数字孪生等技术,结合VR实训与区块链存证,形成多方协同的安全管理闭环,提升施工现场安全管控效能。

关键词: 水利水电工程; 施工现场; 安全管理

引言

水利水电工程施工现场环境复杂,多工种交叉作业、大型设备密集,安全管理至关重要。当前,传统管理模式在风险预判、智能监管等方面存在不足,难以适应动态变化的施工场景。本文聚焦施工现场安全管理,分析现存问题,从动态风险防控、智能化监管、安全素养培育及责任闭环管理等方面,探讨创新优化策略,旨在为构建高效、协同的安全管理体系提供思路,提升水利水电工程施工安全保障能力。

1 水利水电工程施工现场安全管理概述

水利水电工程施工现场环境复杂多变,安全管理工 作贯穿施工全流程,是保障作业有序推进的核心环节。 施工现场涉及多工种交叉作业、大型设备密集运转以 及复杂地质条件下的作业面拓展,任何环节的疏漏都可 能引发连锁反应,因此需要构建动态适配的安全管控体 系。针对人员行为安全,需建立基于作业场景的风险预 判机制,通过实时采集的作业数据识别不安全动作,例 如在高空作业区域设置智能监测节点, 捕捉未规范使用 防护用具的行为并即时预警,同时结合作业人员技能画 像, 匹配相应的作业权限, 避免因技能不匹配导致的操 作风险。设备安全管理需突破传统的定期检修模式,引 入物联网传感技术对关键设备的运行参数进行持续追 踪,比如对启闭机的轴承温度、液压系统压力等数据进 行实时分析,建立故障预警模型,在设备性能出现异常 波动时自动触发维护指令,确保设备始终处于安全运行 阈值内。施工环境的安全管控要聚焦地质条件变化与气 象因素影响,通过部署在作业面周边的监测设备,实时 获取边坡位移、地下水位、风速等数据,结合三维地质 模型进行动态推演,提前识别可能出现的滑坡、涌水等 风险,同步调整作业计划,实现环境风险的主动防控。 安全管理体系的创新在于构建多方协同的响应网络,将 作业班组、技术部门、安全监督团队的信息实时互通, 形成问题发现、分析、处置的闭环流程,例如当监测系 统发现某区域支护结构变形时,系统自动推送相关数据 至技术团队,同步调度就近的作业班组进行应急加固, 通过流程的无缝衔接缩短风险处置时间。

2 水利水电工程施工现场安全管理现存问题

2.1 风险预判与动态管控脱节

水利水电工程施工的作业场景时刻处于变化之中, 各类风险因子也随之不断演变。在进行风险预判时,不 少项目团队往往依据过往类似工程的经验数据来构建风 险模型。然而,每个水利水电工程都具有独特性,其地 质条件、水文状况、施工工艺以及周边环境等都存在差 异。比如,在某一山区的水利工程,虽然与其他地区已 建工程在规模和类型上有相似之处,但该山区地质构造 复杂,存在多条活动断层,前期风险预判若仅参考常规 经验,未对这一特殊地质因素进行深入勘察和分析,就 无法精准识别出因断层活动可能引发的地震、山体滑坡 等重大风险。在施工推进过程中, 当作业环境发生显著 变化,如遇到突发暴雨导致地下水位迅速上升,或者因 地质条件突变致使边坡稳定性急剧下降时, 动态管控机 制却未能及时、有效地做出响应。现场的风险监测设备 可能仅针对常规风险设置了固定的监测阈值,对于这种 超出预期范围的环境变化,无法自动调整监测参数并及 时发出预警。施工人员可能缺乏应对此类突发变化的操 作指南,只能凭借个人经验进行处理,容易出现应对不 当的情况,使得潜在风险迅速转化为安全事故[1]。这就导 致了风险预判与动态管控之间出现严重脱节,无法形成 连贯、有效的风险防控体系。

2.2 智能化安全监管应用不足

当前,在水利水电工程施工现场,智能化安全监管 手段的应用程度仍较为有限。部分施工现场虽然配备了 一些智能监测设备,如摄像头、传感器等,但这些设备 未能形成一个有机的整体,彼此之间的数据无法实现高 效共享与协同分析。例如,施工现场的摄像头主要用于 监控人员的出入情况和作业区域的大致动态,而安装在 设备上的传感器仅能监测设备的个别运行参数,两者的 数据分别存储和显示,管理人员难以从这些分散的数据 中快速提取出全面、准确的安全信息。智能化分析算法 的应用也不够成熟。即使设备采集到了大量的数据,由 于缺乏先进的数据分析算法,无法对这些数据进行深度 挖掘和分析, 难以从中精准识别出潜在的安全隐患。比 如,通过传感器收集到的设备运行数据中,可能隐藏着 设备即将发生故障的早期迹象,但由于分析算法无法有 效提取这些特征信息,就无法提前对设备故障风险进行 预警。智能化安全监管系统与施工现场的实际业务流程 融合度不高,未能实现根据安全风险状况自动调整施工 计划和资源配置,导致智能化安全监管的优势未能充分 发挥出来,施工现场仍然过度依赖传统的人工巡查和经 验判断来保障安全。

2.3 人员安全素养与责任传导不均

在水利水电工程施工队伍中,人员的安全素养参差 不齐。一线作业人员大多来自不同地区,文化程度和专 业技能水平差异较大。一些作业人员可能缺乏系统的 安全培训,对水利水电工程施工中的各类安全风险认识 不足,不清楚正确的安全操作规程。例如,在进行电气 设备操作时, 部分人员不了解设备的基本原理和安全注 意事项,容易因违规操作引发触电事故。对于一些技术 含量较高的作业, 如复杂地质条件下的隧洞开挖, 缺乏 专业技能的人员可能无法准确判断作业过程中的安全风 险,也不具备相应的应急处置能力。在责任传导方面, 从项目管理层到一线作业人员, 存在责任落实不到位的 情况。项目管理层虽然制定了一系列的安全管理制度和 责任分工,但在实际执行过程中,未能将责任清晰、有 效地传递到每一位作业人员。一些基层管理人员对安全 责任的重视程度不够,在日常工作中只关注施工进度和 质量,忽视了安全管理工作,导致安全管理制度在基层 执行时大打折扣[2]。对于安全责任的考核与奖惩机制不够 完善,对于严格遵守安全规定、表现优秀的人员未能给 予充分的奖励和激励,而对于违反安全规定的行为,处 罚力度不足,无法起到足够的警示作用,使得人员在安 全责任落实上缺乏足够的动力和约束, 进而影响了整个 施工现场的安全管理效果。

3 水利水电工程施工现场安全管理优化策略

3.1 构建动态风险防控体系

(1)基于施工全周期的风险因子图谱构建,需融合 实时勘察数据与三维地质建模技术,将地形地貌、岩性 分布、水文动态等要素转化为可量化的风险参数。通过 在作业面布设微型传感器阵列,持续捕捉围岩应力变 化、渗流量波动等微观数据,结合机器学习算法生成风 险演化曲线,精准识别不同施工阶段的风险跃迁节点, 例如在隧洞开挖至断层破碎带时, 自动强化对掌子面前 方岩体稳定性的监测频次。(2)建立风险响应的自适应 调整机制,将施工工序与风险等级进行动态绑定,当监 测数据显示某区域风险指数突破预设阈值时, 系统自动 触发作业参数的优化方案。如遭遇强降雨导致边坡含水 率剧增时,即刻调整开挖坡度与支护密度,同步联动拌 合站调整混凝土初凝时间,确保临时支护强度与环境变 化相匹配,避免因参数固化引发结构失稳。(3)开发 跨作业面的风险耦合分析模块,针对水利工程多区域协 同施工的特点,捕捉不同作业面风险的关联性影响。例 如大坝浇筑区的温度应力异常可能传导至相邻灌浆作业 面,引发裂缝扩展风险,通过建立风险传导系数矩阵, 在单一区域出现预警时, 自动推演关联区域的风险叠加 效应,提前启动协同防控措施。

3.2 推进智能化监管升级

(1) 搭建分布式物联网感知网络,采用低功耗广域 网技术实现各类监测设备的全域互联,将人员定位终 端、设备振动传感器、环境温湿度监测仪等数据实时汇 聚至边缘计算节点。例如在高空作业平台安装毫米波雷 达与红外成像装置,同步捕捉人员肢体姿态与设备倾角 数据,通过多源数据融合判断超载、偏载等违规状态, 在0.5秒内触发声光报警与平台锁止机制。(2)引入数 字孪生技术构建施工场景镜像系统,将现场实体进度、 设备状态、人员分布等数据实时映射至虚拟空间,通过 模拟不同工况下的安全边界条件,提前预判潜在风险。 如在导流洞爆破作业前,输入炸药量、岩体波速等参数 进行虚拟推演,精准划定警戒范围并自动生成人员撤离 路线,对比虚拟路径与现场人员定位数据,确保所有人 员在起爆前抵达安全区域[3]。(3)开发智能决策支持引 擎,基于历史事故案例与实时监测数据训练深度学习模 型,实现风险识别的自主进化。例如对碾压混凝土坝的 摊铺温度、碾压遍数等数据进行持续学习, 当出现异常 数据模式时, 自动匹配相似工况下的处置方案, 同步推 送至现场终端, 指导作业人员调整碾压参数, 避免人为 经验偏差导致的质量安全隐患。

3.3 创新安全素养培育模式

(1)构建基于VR的场景化实训系统,还原水利工

程典型高风险作业场景,如深基坑突水、脚手架坍塌等 紧急状况,并模拟现场嘈杂环境、复杂光线等细节,增 强真实感。通过沉浸式体验让作业人员在虚拟环境中反 复演练应急处置流程。系统可实时捕捉操作动作的标准 度, 生成个性化技能短板报告, 定向推送专项训练模 块,强化肌肉记忆与反应速度。(2)建立技能-风险匹配 度评估模型,依据作业人员的历史操作数据与培训成绩 生成动态能力画像,将不同作业岗位的风险等级与技能 要求进行量化关联。例如在闸门安装作业中,根据人员 对吊装角度、螺栓预紧力的把控精度, 自动分配相应吨 位的操作权限,对于高风险工序设置双人验证机制,通 过技能与风险的精准匹配降低人为失误概率。(3)开发 实时互动式安全知识推送工具,依托智能安全帽内置的 骨传导耳机与语音交互系统, 在作业人员进入特定区域 时,自动播报该区域的风险特征与操作禁忌。如进入高 压电缆敷设区时,设备感应到人员位置后,即时讲解电 缆绝缘层检测要点与跨步电压规避方法,结合AR眼镜在 视野中叠加安全操作指引,实现知识传递与作业过程的 无缝融合。

3.4 完善责任闭环管理机制

(1)设计风险溯源的全链条追踪系统,对每个施工环节的操作行为、设备状态、环境参数进行区块链存证,形成不可篡改的责任节点图谱。例如在帷幕灌浆作业中,将钻孔深度、浆液配比、压力曲线等数据与操作班组、监理人员进行实时绑定,当后期出现渗漏问题时,通过智能合约自动调取关联数据,快速定位责任环节与影响因子,避免推诿扯皮。(2)建立动态绩效反馈机制,将安全管控成效转化为可量化的考核指标,与作业班组的工序单价、设备使用权限等直接挂钩。例如对

隧洞开挖班组设置超挖控制率、支护及时性等安全相关 KPI,通过传感器数据自动核算得分,当连续三次考核达 标时,提升其优先领用先进设备的权限,反之则缩减作 业范围,形成正向激励的责任传导路径。(3)构建跨层 级的问题协同处置平台,采用扁平化流程设计打破部门 壁垒,当监测系统发现安全隐患时,自动将问题描述、 影响范围、处置建议等信息推送至相关责任主体。如发 现模板支撑系统位移时,同步关联木工班组、测量团队 与安全巡查员,通过平台实时共享处置进度,设置阶梯 式预警节点,超时未响应自动升级至更高层级,确保从 问题发现到闭环处置的全流程可控^[4]。

结语

综上所述,水利水电工程施工现场安全管理需突破传统模式,通过技术创新与机制优化实现质的提升。动态风险防控体系结合实时数据与智能推演,可主动规避环境与作业风险;智能化监管借助物联网与数字孪生技术,实现风险精准识别与快速响应;VR实训与区块链责任存证,能从人员与责任层面筑牢安全防线。未来,需持续深化多技术融合与多方协同,打造更具适应性的安全管理生态,为水利水电工程安全施工提供坚实支撑。

参考文献

- [1]师建零.浅析水利水电工程施工现场的安全管理[J]. 砖瓦,2020(10):126-127.
- [2]刘亚军.浅析水利水电工程施工现场的安全管理[J]. 建筑工程技术与设计,2021(21):1901.
- [3]李拓.浅析水利水电工程施工现场的安全管理[J].建筑工程技术与设计,2020(36):3374.
- [4]彭虎.浅析水利水电工程施工现场的安全管理[J].建筑工程技术与设计,2021(9):1679.