交通工程管理中现场管理的应用分析

倪云刚

绍兴上虞交通建设管理有限公司 浙江 绍兴 312000

摘 要:随着城市化进程的迅猛推进以及交通基础设施建设热潮的持续高涨,交通工程在城市发展格局中的地位愈发关键。本文围绕交通工程管理中现场管理的应用展开分析,首先阐述了现场管理在保障工程质量、确保施工安全、控制工程进度及节约工程成本等方面的重要性;接着指出当前现场管理存在管理理念落后、信息化程度低、人员素质参差不齐、安全管理不到位及质量管理有漏洞等现状问题;最后针对性地提出引入先进管理理念、加强信息化建设、提升人员素质、强化安全管理和严格质量管理等应用策略,旨在为提升交通工程现场管理水平提供参考,保障交通工程建设的高效、安全与优质推进。

关键词:交通工程管理;现场管理;应用

引言:交通工程作为基础设施建设的重要组成部分,其施工质量与效率直接关系到社会经济发展和公众出行安全。现场管理作为交通工程管理的核心环节,贯穿于施工准备、作业实施到竣工验收的全过程,对工程的综合效益起着决定性作用。然而,当前部分交通工程项目在现场管理中仍面临理念滞后、技术应用不足、人员能力欠缺等问题,导致质量隐患、安全风险及成本超支等现象时有发生。基于此,本文深入探讨交通工程现场管理的重要性、现状及优化策略,以期为规范管理流程、提升管理效能提供实践指导。

1 交通工程管理中现场管理的重要性

1.1 确保施工安全

交通工程施工现场环境复杂,涉及大型机械作业、高空作业及交叉施工等场景,现场管理是防范安全事故的关键。管理人员通过划定作业区域、设置警示标识,可有效隔离危险区域与施工人员;对特种设备进行日常检查和维护,能避免机械故障引发的意外;针对暴雨、高温等特殊天气,及时启动应急预案,调整施工安排以保障人员安全。

1.2 控制工程进度

现场管理是推动交通工程按计划推进的核心手段。 通过制定详细的日、周施工计划,并对各工序完成情况 进行实时跟踪,能及时发现进度滞后问题。例如,当路 基开挖进度缓慢时,现场管理人员可协调增加机械设备和 人力投入,或优化作业班次,确保关键节点如期完成。此 外,现场管理能有效协调材料供应、设备调度与工序衔 接,避免因材料短缺、机械闲置导致的工期延误。

1.3 节约工程成本

现场管理通过精细化管控实现工程成本的有效节

约。在材料管理方面,准确核算用量、避免超额采购和浪费,同时监督材料存储条件,减少损耗;在人力管理上,合理调配施工人员,避免窝工现象,提高工作效率;在机械使用上,统筹安排设备进场和作业时间,降低闲置费用和维护成本。[1]。

2 交通工程管理中现场管理的现状

2.1 管理理念落后

部分交通工程现场管理仍秉持传统模式,过度侧重工程进度,忽视质量、安全与成本间的平衡。管理决策多依赖经验,缺乏对行业前沿理念,如精益管理、绿色施工的吸收运用。在资源分配上,未充分考虑施工流程的连贯性与协同性,常导致材料积压、设备闲置。同时,管理中缺乏前瞻性,面对施工中可能出现的复杂地质、恶劣天气等状况,难以及时调整策略,无法适应交通工程建设规模扩大、技术复杂度提升的需求,制约工程综合效益提升。

2.2 信息化程度低

多数施工现场仍以人工记录、口头传达为主,信息传递易延误、失真。在工程进度把控上,难以实时掌握各工序进展;对材料库存,无法精准知晓余量与消耗速度。监控设备覆盖不足,难以全方位监测施工现场,尤其在偏远区域或复杂作业面存在诸多管理盲区。此外,不同部门、环节间信息系统相互独立,形成"信息孤岛",数据无法共享、协同分析,阻碍对工程整体态势的精准判断与高效决策,与当下数字化、智能化的行业发展趋势脱节。

2.3 人员素质参差不齐

施工一线人员多为农民工,缺乏系统专业培训,对 新技术、新工艺理解运用困难,施工操作易出现偏差, 影响工程质量。部分管理人员管理知识陈旧,未及时更新,面对复杂施工组织、协调难题力不从心。而且人员流动频繁,新老员工交接不畅,导致施工经验、技术传承受阻。此外,部分人员责任意识淡薄,工作敷衍,对施工中的违规行为视而不见,增加安全、质量风险,降低现场管理效能。

2.4 安全管理不到位

施工现场安全警示标识设置不规范、数量不足,对过往行人、车辆及施工人员无法起到有效警示。安全防护设施配备不齐全,如高空作业的安全带、临边防护栏等存在缺失或损坏未及时更换情况。安全培训流于形式,内容枯燥、缺乏针对性,施工人员未真正掌握安全操作要点与应急处置方法。日常安全检查不细致,对临时用电、特种设备操作等关键环节隐患排查存在遗漏,且对已发现问题整改跟踪不到位,安全管理制度执行不力,为工程埋下诸多安全隐患。

2.5 质量管理存在漏洞

材料进场检验把关不严,部分不合格材料流入施工现场,如钢筋强度不达标、水泥标号不符等。施工过程中,对关键工序质量控制缺失,像混凝土浇筑振捣不密实、路基压实度不足等问题时有发生。质量检测手段落后,多依赖人工抽检,样本覆盖面窄,难以全面反映工程质量状况。而且质量责任追溯机制不完善,出现质量问题后,难以精准定位责任主体,导致问题整改不彻底,严重影响交通工程的耐久性与安全性^[2]。

3 交通工程管理中现场管理的应用策略

3.1 引入先进管理理念

引入先进管理理念需从根本上打破传统管理的思维 定式,构建以"系统协同"为核心的管理框架。(1)应 转变"重进度轻效益"的单一导向,建立进度、质量、 安全、成本的多维平衡机制,将工程全生命周期的综 合效益纳入管理目标。例如,在制定施工计划时,通过 BIM技术模拟不同工序衔接的资源消耗与时间成本,实 现各要素的最优配置,避免因盲目赶工导致的质量隐患 或成本超支。(2)积极借鉴精益管理理念,推行"消除 浪费、持续改进"的现场管理模式。通过梳理施工流程 中的冗余环节,如材料二次搬运、设备空转等,优化资 源调度方案,提高人机协同效率。同时,引入绿色施工 理念,将环保要求融入现场管理细节,比如采用低噪音 设备、设置扬尘监测系统、推行建筑垃圾分类回收,既 符合生态建设要求,又能通过节能降耗降低长期运营成 本。(3)强化前瞻性管理思维,建立动态响应机制。针 对交通工程中常见的地质复杂、气候多变等问题,提前 构建风险数据库,结合历史案例与实时监测数据预判潜在风险,并制定多套应对预案。例如,在山区道路施工前,通过地质雷达探测技术评估边坡稳定性,提前规划支护方案,避免施工中出现坍塌事故导致的工期延误。通过将先进理念转化为可操作的管理流程,推动现场管理从"被动应对"向"主动管控"升级,适应现代化交通工程建设的高要求。

3.2 加强信息化建设

加强信息化建设是破解交通工程现场管理低效难题 的关键举措, 需构建覆盖施工全流程的数字化管理体 系。(1)应搭建一体化信息管理平台,整合进度管理、 材料管控、人员调度等功能模块,实现数据的实时共享 与集中处理。例如,通过平台录入材料进场信息,自动 关联库存数据与施工计划, 当某类建材余量低于预警值 时,系统自动推送补货提醒,避免因材料短缺导致的工 期中断;同时,将施工人员的技能证书、出勤记录等信 息纳入平台,便于快速匹配岗位需求,优化人力资源配 置。(2)完善施工现场智能监控网络,扩大信息化技 术的应用场景。在关键作业区域部署高清摄像头、传感 器等设备,实时采集施工参数与环境数据,如路基压实 度、混凝土养护温度、现场噪音值等,数据通过5G网 络传输至管理平台,形成可视化图表供管理人员分析决 策。针对隧道施工等高危场景,可引入BIM+GIS技术构 建三维模型, 动态叠加施工进度与地质变化数据, 提前 预警掌子面前方的潜在风险。(3)推动数据资源的深 度挖掘与协同应用。建立工程数据库,存储历年施工案 例、设备运行参数、质量检测结果等信息,通过大数据 分析识别管理规律,如某类机械的易损部件更换周期、 特定地质条件下的最优施工工艺等, 为现场管理提供数 据支撑。同时,打通各参与方的信息接口,让建设单 位、施工企业、监理机构能够通过权限划分共享数据, 减少信息传递环节,提高问题协同处理效率,实现从 "人工跑腿"到"数据跑路"的转变。

3.3 提升人员素质

提升人员素质需构建系统化的培养与管理体系,从技能、意识、责任三个维度同步发力。针对施工一线人员,应建立"岗前培训+在岗轮训"机制,将理论讲解与实操训练相结合。岗前培训聚焦基础安全规范、设备操作流程等内容,例如通过VR模拟高空作业场景,让工人直观感受违规操作的风险;在岗轮训则根据工程进度引入针对性课程,如沥青路面摊铺时专项培训温度控制技巧,确保施工人员掌握关键工序的技术要点。同时,为农民工群体开设技能等级认证通道,鼓励通过考

核提升专业能力,打破"体力型"用工的局限。对于管理人员,需强化现代化管理能力培养,定期组织精益管理、信息化工具应用等专题研修班,邀请行业专家解析大型交通工程的管理案例,提升其统筹协调与风险预判能力。建立"老带新"导师制度,由资深管理者一对一指导新人,传承现场问题处理经验,缩短成长周期。此外,将职业道德与责任意识教育融入日常管理,通过通报质量安全事故案例、开展廉洁教育讲座,引导管理人员树立"工程质量终身负责制"的理念,杜绝敷衍塞责、违规操作等行为。完善人员考核与激励机制是素质提升的重要保障。制定量化考核标准,将施工质量、安全表现、技能水平等纳入评估体系,考核结果与薪酬晋升直接挂钩。设立"技能标兵""管理能手"等奖项,对表现优异者给予物质与精神双重奖励,激发全员提升素质的主动性。

3.4 强化安全管理

强化安全管理需构建"预防为主、全程管控"的闭 环体系,从硬件配置到制度执行形成全方位防护。(1) 规范安全设施的设置与维护, 在施工现场划分危险作业 区、材料堆放区等功能区域,采用标准化围挡隔离并悬 挂醒目的安全警示标识,如"高空作业严禁抛物""带 电区域请勿靠近"等。针对高空作业、临时用电等高危 环节,强制配备合格的防护装备,如防坠安全网、绝缘 手套等,并安排专人每日检查设备完好性,对破损部件 及时更换,确保防护措施始终有效。(2)深化安全培 训与应急演练的实效性。培训内容需结合工程特点细化 分类,如针对隧道施工人员重点讲解瓦斯监测与逃生技 巧,对机械操作人员强化设备盲区风险认知;采用案例 分析、情景模拟等互动形式,替代传统说教式授课,增 强施工人员的安全意识。每月组织至少一次应急演练, 模拟坍塌、火灾等突发事故, 检验人员疏散、设备救援 的协同能力,通过实战暴露问题并优化预案。(3)建立 严格的安全检查与责任追溯机制。实行"日常巡查+专 项督查"模式,管理人员携带检查表逐项核查安全措施 落实情况,对发现的违规行为当场制止并记录存档。将 安全绩效与班组及个人奖惩直接挂钩,一旦发生安全事 故,通过现场监控、作业记录等溯源追责,倒逼全员履 行安全职责,形成"人人讲安全、事事为安全"的管理

氛围。

3.5 严格质量管理

严格质量管理需构建全链条闭环管控体系, 筑牢工 程质量防线。材料进场实行"双线核查",技术人员与 监理联合核验出厂合格证、性能检测报告, 同步按规范 抽样复试,如钢筋屈服强度、水泥初凝时间等关键指标 必须达标,不合格材料当场清退并记录供应商黑名单。 建立材料全生命周期台账,关联进场批次、使用部位及 检测结果,实现质量溯源可查。施工环节推行"工序卡 控"机制,关键工序实施"样板先行",如路面基层摊 铺先做100米试验段,经检测压实度、平整度合格后再大 面积施工。设置旁站监督岗,对混凝土浇筑、预应力张 拉等重点工序全程盯控,实时记录施工参数,如混凝土 初凝前必须完成振捣,确保密实度达标。隐蔽工程验收 实行"三签字"制度,施工、监理、建设单位共同核验 并留存影像资料,未通过验收不得进入下道工序。检测 与整改形成联动,引入回弹仪、超声波检测仪等设备强 化过程抽检,无人机航拍排查路面裂缝等表观缺陷。建 立质量问题销号制度,发现蜂窝麻面、强度不足等问题 立即标注责任人与整改时限,复查合格后方可销号。将 质量指标与班组绩效直接挂钩, 出现重大质量隐患的班 组一票否决,以刚性约束保障工程质量终身可靠[3]。

结束语

综上所述,交通工程现场管理的优化应用是保障工程质量、安全、进度与成本的核心抓手。从理念革新到信息化落地,从人员素养提升到安全与质量的全链条管控,每一项策略的实施都直指现场管理的痛点与难点。通过构建科学高效的管理体系,既能化解当前管理中存在的滞后性与粗放性问题,更能为交通工程的可持续发展注入动力。

参考文献

[1]魏丹.城市轨道交通工程管理策略分析[J].四川水泥.2022(12):196.

[2]刘庆.交通工程质量监督中的问题及对策[J].山东工业技术,2021(24):271.

[3]胡春雨,刘峰.交通工程质量安全监督中存在的问题 及对策[J].交通世界,2022(35):131-132.