市政道路沥青路面施工技术

林博

温州同邦建筑设计有限公司 浙江 瑞安 325200

摘 要:市政道路沥青路面施工是城市基础设施建设的关键。该技术凭借沥青路面的平整、耐磨、抗滑等特性,广泛应用于市政工程中。施工包括材料配比、拌和生产、摊铺、碾压等关键步骤,需严格控制温度、速度和压实度。同时,注重接缝处理与后期养护,确保路面质量。随着技术不断进步,沥青路面施工技术将持续优化,以满足城市发展对道路质量的更高要求。

关键词: 市政道路; 沥青路面; 施工技术

引言:市政道路作为城市交通网络的基础,其质量直接关系到城市交通的顺畅与安全。沥青路面因具有良好的行车舒适性、抗滑性及施工便捷性,成为市政道路建设的首选。随着城市化进程的加快,对市政道路沥青路面的施工技术要求也日益提高。本文旨在探讨市政道路沥青路面的施工技术要点,以期为提高路面质量、延长使用寿命提供理论支持和实践指导。

1 市政道路沥青路面施工基本原理

- 1.1 沥青路面的构成与功能
- 1.1.1 沥青混合料的组成

沥青混合料是市政道路沥青路面的主要构成材料。 它由沥青、矿料(包括粗集料和细集料)、填料以及必要时加入的添加剂组成。这些组分通过一定的配合比和工艺要求进行混合,以确保路面的强度和耐久性。

1.1.2 各组成材料的作用

(1) 沥青:作为胶结材料,起着黏合和充填作用,使混合料形成整体,增强路面的柔性和防水性。(2) 矿料:粗集料提供路面的骨架支撑,细集料则填充空隙,与沥青共同构成紧密的结构,增强路面的承载能力。(3)填料:通常使用矿粉等细粒材料,用于调整混合料的空隙率,提高路面的密实度和耐久性。(4)添加剂:用于改善混合料的性能,如提高抗剪强度、抗水性能等。

1.2 施工原理概述

(1)沥青混合料的制备与运输。在施工现场或拌和厂,按照设计好的配合比将沥青、矿料、填料等组分进行混合,制备成均匀的沥青混合料。制备好的混合料通过自卸汽车等运输工具运至施工现场,确保在铺设前保持适宜的温度。(2)基层处理与混合料铺设。在进行沥青路面施工之前,需要对道路基层进行处理,确保其平整、坚实、干燥。处理完成后,将沥青混合料均匀铺设在基层上,注意控制铺设厚度和均匀性。(3)压实处

理与养护检查。铺设完成后,使用压路机对路面进行压实,以提高路面的密实度和承载能力。压实完成后,对路面进行养护和检查,确保路面的平整度和耐久性满足设计要求。养护期间,需保持路面清洁,防止车辆急停急启造成损伤。

2 市政道路沥青路面施工前的准备工作

- 2.1 原材料选择与质量控制
- (1)沥青、砾石、粗细集料等材料的选择标准。在选择沥青时,应优先考虑其针入度、软化点、延度等关键指标,确保沥青具有优良的黏结性和耐候性。砾石和粗细集料的选择则需关注其粒度分布、压碎值、磨耗值等特性,以确保这些材料能够形成紧密、坚固的路面结构。同时,所有原材料都应符合国家或行业的相关标准,严禁使用劣质材料。(2)原材料的抽查与检验方法。为确保原材料的质量,应在进场前对其进行严格的抽查与检验。对于沥青,可采用针入度试验、软化点试验和延度试验等方法进行检测;对于砾石和粗细集料,则可通过筛分试验、压碎值试验和磨耗试验等手段进行检验。同时,应建立完善的原材料质量追溯体系,确保每批原材料的来源和质量都可追溯^[1]。

2.2 施工机械检查与准备

(1)施工机械的选择与配置。根据施工需求,合理选择与配置施工机械,如拌和机、运输车、摊铺机、压路机等。这些机械的性能和数量应满足施工要求,确保施工效率和路面质量。同时,应考虑机械的可靠性和耐用性,降低故障率。(2)机械的故障排查与性能调试。在施工前,应对所有机械进行全面的故障排查和性能调试。检查机械的传动系统、液压系统、电气系统等关键部位,确保其运行正常。同时,应对机械进行试运行,调整各项参数,使其达到最佳工作状态。

2.3 施工设计与方案制定

(1)施工图纸的审核与优化。在施工前,应对施工 图纸进行严格的审核与优化。检查施工图纸的准确性和 完整性,确保其符合设计规范和要求。同时,结合现场 实际情况,对施工图纸进行优化,提高施工的可操作性 和效率。(2)施工方案的制定与调整。根据施工图纸 和现场条件,制定合理的施工方案。施工方案应包括施 工流程、人员配置、机械调度、质量控制措施等内容。 在施工过程中,应根据实际情况对施工方案进行适时调 整,确保施工的顺利进行。

3 市政道路沥青路面施工技术要点

3.1 沥青混合料的制备技术

(1)配合比的设计与调整。沥青混合料的配合比设计是路面施工的基础,它决定了路面的物理力学性能。配合比设计需根据道路等级、交通量、气候条件、原材料性能等因素综合考虑。在设计过程中,应通过试验确定最佳沥青用量、矿料级配等关键参数。同时,还需考虑施工过程中的变异性和长期性能稳定性,对配合比进行必要的调整。调整时,应确保沥青混合料的稳定性、耐久性和施工和易性满足要求。(2)拌制过程的质量控制。沥青混合料的拌制是制备技术的关键环节。在拌制过程中,应严格控制原材料的温度、含水量和投料顺序。沥青和矿料的加热温度应保持在适宜的范围内,以确保混合料的均匀性和稳定性。同时,拌和时间应足够,以确保沥青充分裹覆矿料,形成紧密的结构。此外,还需对拌制的混合料进行抽样检验,检测其油石比、级配等指标,确保质量符合设计要求。

3.2 基层处理技术

(1)基层的清理与修补方法。在铺设沥青混合料之前,必须对基层进行彻底的清理。清除基层表面的杂物、尘土和松散颗粒,确保基层干净、坚实。对于局部损坏或不平整的区域,应采取修补措施,如填充、压实等,以恢复基层的平整度和稳定性。修补时,应选用与基层材料相容性好的材料,确保修补部分与基层整体结合紧密。(2)基层的平整度与稳定性要求。基层的平整度是保证路面平整度的关键。在铺设沥青混合料前,应对基层进行平整度检测,对于超出允许误差的区域,应进行整平处理。同时,基层应具有足够的稳定性,能够承受车轮荷载和自然环境的作用而不发生变形。因此,在基层施工过程中,应严格控制施工质量,确保基层的强度、刚度和稳定性满足要求[2]。

3.3 混合料的铺设技术

(1)铺设过程中的温度与厚度控制。沥青混合料的 铺设温度对其压实效果和路面质量具有重要影响。铺设 时,应确保混合料的温度处于适宜的范围内,避免过高 或过低导致压实不足或过度老化。同时,铺设厚度也是 控制路面质量的关键因素。铺设过程中,应使用摊铺机 或人工控制铺设厚度,确保厚度均匀、一致。铺设厚度 的偏差应控制在允许范围内,以确保路面的平整度和承 载能力。(2)铺设速度与均匀性的保持。铺设速度是影 响路面质量的重要因素之一。铺设速度过快可能导致混 合料分布不均、压实不足;铺设速度过慢则可能增加混 合料的氧化老化风险。因此, 在铺设过程中, 应根据混 合料的性能、施工机械的性能以及现场条件等因素综合 考虑,选择合适的铺设速度。同时,应保持铺设的均匀 性,避免出现局部堆积或漏铺现象。(3)铺面平整度 与密实度的控制。铺面的平整度和密实度是衡量路面质 量的重要指标。在铺设过程中,应采取有效措施控制铺 面的平整度和密实度。如使用摊铺机进行铺设时,应调 整摊铺机的参数,如振幅、频率等,以确保铺面的平整 度。同时, 在压实过程中, 应选择合适的压路机和压实 方法,控制压实遍数和压实速度,以确保铺面的密实度 满足要求。

3.4 压实技术

(1) 压路机的选择与组合方式。压实是沥青路面施 工的重要环节,选择合适的压路机及组合方式对提升路 面压实度和耐久性至关重要。选择时需考虑压路机的重 量、振幅、频率等参数及施工现场实际情况。同时,要 依据不同压实阶段选用合适组合:初压用低振幅、高频 率振动压路机进行初步压实; 复压用高振幅、低频率振 动压路机进一步压实;终压则用轮胎压路机实现最终 平整并消除轮迹。(2)初压、复压、终压的步骤与要 求。初压是压实第一阶段,目的是稳定混合料,减少推 移和裂缝, 需用低振幅、高频率振动压路机缓慢均匀压 实。复压为第二阶段,旨在进一步提高路面密实度和稳 定性,应使用高振幅、低频率振动压路机,且要控制好 压实遍数与速度。终压是最后阶段, 主要是消除轮迹, 提高路面平整度和光洁度,通常用轮胎压路机或静碾压 路机进行最终平整压实,确保达到设计的密实度和平整 度[3]。(3)压实过程中参数的调整与控制。压实过程 中的参数调整与控制是提高路面质量的关键。在压实过 程中,应密切关注混合料的温度和压实度的变化,根据 实际情况及时调整压路机的振幅、频率、压实遍数和压 实速度等参数。同时,还应注意控制压实过程中的含水 量,确保混合料在最佳含水量状态下进行压实,以获得 最佳的压实效果。

3.5 接缝处理技术

(1)施工缝及构筑物两端接缝的处理方法。施工缝 和构筑物两端的接缝是沥青路面施工中的薄弱环节,处 理不当容易导致路面开裂、脱落等问题。因此, 在接缝 处理过程中, 应采取有效的措施确保接缝的紧密和平 顺。对于施工缝,通常采用垂直切割的方法进行处理, 确保接缝处无松散、无裂缝。对于构筑物两端的接缝, 则应根据构筑物的类型和尺寸选择合适的处理方法,如 设置胀缝、缩缝等。(2)横向接缝与纵向接缝的错位要 求。横向接缝和纵向接缝的错位处理是接缝处理技术中 的关键环节。在处理横向接缝时,应确保新铺设的混合 料与已铺设的混合料之间形成紧密的接合,避免产生错 台或裂缝。通常,横向接缝的错位宽度应控制在一定范 围内,以确保接缝的平整度和稳定性。在处理纵向接缝 时,同样需要注意错位的控制,确保接缝处无明显的起 伏或凹陷。(3)接缝处的紧密平顺性保证措施。为确保 接缝处的紧密平顺性, 应采取一系列有效的保证措施。 首先,在接缝处理前,应对接缝处进行彻底的清理,确 保无杂物、尘土等污染物。其次,在接缝处理过程中, 应严格控制混合料的温度和压实度,确保接缝处达到与 周围路面相同的密实度和平整度。最后,在接缝处理完 成后,还应对接缝处进行必要的养护和检查,及时发现 并处理潜在的问题[4]。

4 市政道路沥青路面施工质量控制与验收

4.1 质量控制标准与方法

(1)各施工环节的质量控制指标:从原材料的准备到混合料的拌制、运输、铺设、压实,以及接缝处理,每一个环节都有其特定的质量控制指标。例如,混合料的配合比需精确无误,以确保其物理力学性能满足设计要求;铺设时,需严格控制温度、厚度和均匀性,避免产生离析和裂缝;压实过程中,压实度和平整度是关键指标,直接影响路面的使用性能和寿命。(2)质量检测与监控手段的应用:现代技术的发展为质量检测与监控提供了更多手段。例如,使用红外热像仪监测混合料的铺设温度,确保其在适宜范围内;采用激光平整度仪检测铺设后的路面平整度,实现数据的快速采集和分析;利用压实度仪对压实质量进行实时监测,及时调整压实参数。

4.2 施工过程中的问题与应对措施

(1)常见的施工质量问题及原因分析:如混合料离析可能是由于拌制不均匀或运输过程中发生颠簸所致;铺设不均匀可能与摊铺机的操作不当或铺设速度过快有关;压实不足则可能是由于压路机的选择不当或压实遍数不足所导致。(2)针对性的应对措施与改进方法:针对上述问题,可采取一系列措施进行改进。例如,加强拌制过程中的质量控制,确保混合料的均匀性;优化摊铺机的操作参数,提高铺设的均匀性和稳定性;选择合适的压路机和压实方法,确保压实度达到设计要求。

4.3 路面交工质量检查与验收流程

(1)验收前的自检与整改工作:施工单位应在交工前进行全面的自检,发现问题及时整改,确保各项质量指标均满足设计要求。(2)验收过程中的检测项目与方法:验收时,需对路面的平整度、压实度、厚度、强度等进行全面检测。可采用目测、测量仪器、取样试验等多种方法进行检测,确保检测结果的准确性和可靠性。(3)验收结果的评定与反馈机制:验收结果需经过专业人员的评定,若满足设计要求,则可正式交工;若存在问题,则需提出整改意见,直至问题得到解决。同时,应建立完善的反馈机制,及时收集和处理施工和验收过程中出现的问题,为今后的施工提供借鉴和改进。

结束语

综上所述,市政道路沥青路面施工技术是一项系统性、科学性的工程,它关乎城市交通的顺畅与安全,影响着城市的形象与发展。通过精细的配合比设计、严格的施工质量控制以及科学的养护管理,我们可以有效提升沥青路面的耐久性和行车舒适性。未来,随着新技术、新材料的不断涌现,市政道路沥青路面施工技术将迈向更高水平,为城市交通建设贡献更大力量。

参考文献

[1]欧秉清.论市政道路沥青路面施工技术控制要点及 通病防治[J].中国住宅设施,2024,(10):103-104.

[2]徐昊旸.市政道路沥青路面施工中的摊铺技术研究 [J].建材发展导向,2024,(04):41-42.

[3]马丽丽.市政道路沥青路面施工技术与质量控制探析[J].建材与装饰,2024,(12):124-125.

[4]应蕾.市政道路沥青路面施工技术及质量控制研究 [J].居舍,2023,(08):75-76.