基于经济和农业视角的吉林省农村公路建设评价研究

李 冰 王志慧 纪世奎 任 航 吉林省交通规划设计院 综合运输规划研究分院 吉林 长春 130021

摘 要:农村公路是农村经济发展的重要支撑力量。然现阶段的研究很少以量化的视角进行研究。本文以吉林省农村公路为例,选取适宜的指标建立评价体系,通过熵值法、改进AHP法确定权重,建立耦合协调度模型,最终建模分析农村公路建设与农村农业、经济发展之间的关系。以四平市为例,对农村公路规模做出预测。

关键词:农村公路建设规模预测;农业发展;经济发展;耦合度分析

1 前言

改革开放以来,我国的农业农村发展建设如火如荼。其中,农村公路等基础设施的建设对于农村发展起到了重大作用。本文以吉林省为例,根据2012年以来的农村经济和农业发展数据,与农村公路网络的相关指标进行耦合性分析,最终研判吉林省农村地区发展与农村公路建设的适应性情况。

2 国内外研究现状

国外学者针对农村公路建设规模与经济发展之间的 关系作用很多研究。英国著名发展经济学家Rodan于1943 年提出"大推动"理论[1]。美国经济史学家、发展经济先 驱Rostow于1960年提出道路发展是实现"经济条件"的 一个重要前提[2]。国内也有相关研究成果。宋学文等[3]认 为,农村公路是我国经济发展过程中的重要组成部分。孙 根年等[4]利用3个时段截面数据分析区域公路网密度与人 口密度、人均GDP的关系。佟强等基于人口迁移规律,使 用手机信令数据对农村公路建设指数进行建模预测[5]。

目前国内外的研究主要基于建设农村公路对经济、农业的影响,反过来在不同的农村经济模式和体量、人口和农业类型下,农村公路建设的必要性以及建设的规模、布局、等级、关键技术指标如何确定等方面鲜有研究。因此,本研究着重探寻在不断发展变化的经济等条件下,构建分析评估农村公路发展建设规划的技术方法。

3 研究模型构建

3.1 评价指标体系构建

本文通过查询吉林省统计年鉴、田野调查,选取了 人口、农业、经济等方面要素作为农村发展评价指标。 本文构建的指标体系如表1:

表1 评价指标体系

一级指标	二级指标	三级指标	单位
农村公路		农村公路路网密度	公里/每百
指标体系		《 八八 公 时 时 内 石 反	平方公里

			续表:	
一级指标	二级指标	三级指标	单位	
农村公路		农村公路里程	百公里	
指标体系		农村公路技术等级		
农村发展指标体系	高级化	农业总产值	万元	
		年末人均农用机械拥有量	辆/人	
		农业劳动生产率	%	
		每亩粮食产量	斤/亩	
		人均有效灌溉面积	亩/人	
		土地流转率	%	
		农村农业劳动数占比	%	
		单位播种面积化肥施用量	公斤/亩	

3.2 耦合性分析

(1) 熵值法

①建立指标矩阵

$$x = (x_{ij})_{n \times m} = \begin{pmatrix} x_{11} & x_{12} \dots & x_{1n} \\ x_{21} & x_{22} \dots & x_{2n} \\ x_{m1} & x_{m2} \dots & x_{mn} \end{pmatrix}, \begin{cases} i = 1, 2, \dots, & n \\ j = 1, 2, \dots, & m \end{cases}$$

其中, x_i指第i个评价对象的第j个评价指标的值。

②指标矩阵标准化

由于评价指标统计维度不同,本文在进行计算时对所选指标进行标准化处理。正向指标如式2,负向指标如式3。

$$r_{ij} = \frac{x_{ij} - min(x_i)}{\max(x_i) - min(x_i)}$$
 (\$\frac{1}{2}\$)

$$r_{ij} = \frac{\max(x_i) - x_{ij}}{\max(x_i) - \min(x_i)}$$
 ($\exists \zeta 3$)

由于存在某些指标参考值位于区间内,本文采用取 指标参考值相对误差的方法,而后进行标准化处理,公 式为:

由此构建标准化的指标矩阵:

$$R = \begin{pmatrix} r_{ij} \end{pmatrix}_{n \times m} = \begin{pmatrix} r_{11} & r_{12} \dots & r_{1n} \\ r_{21} & r_{22} \dots & r_{2n} \\ r_{m1} & r_{m2} \dots & r_{mn} \end{pmatrix}, \begin{cases} i = 1, 2, \dots, & n \\ j = 1, 2, \dots, & m \end{cases} \quad (\implies 5)$$

③指标熵计算

1)将式5的矩阵做归一化处理

2)分别计算矩阵内各元素的熵:

④指标权重计算

$$w_{j} = \frac{1 - H_{j} + \frac{1}{10} \sum_{j=1}^{m} (1 - H_{j})}{\sum_{j=1}^{p} (1 - H_{j} + \frac{1}{10} \sum_{j=1}^{m} (1 - H_{j}))}, j = 1, 2, ..., m \ (\gtrsim 8)$$

(2) 改进AHP法

由于数据间可能存在关联性,本文将通过改进AHP 法对已赋权的技术指标再次进行主观赋权。

①判断矩阵构造

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$
 $(\vec{x}, 9)$

其中:

计算比较矩阵A的最优传递矩阵R:

$$R = \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ r_{21} & r_{22} & \dots & r_{2n} \\ \dots & \dots & \dots & \dots \\ r_{n1} & r_{n2} & \dots & r_{nn} \end{bmatrix}$$
 (\$\mathref{\mathref{x}}\$10})

式中: $r_{ij} = \sum_{k=1}^{n} (a_{ik} + a_{k_j})$,把最优矩阵R转为判断矩阵D:

$$D = \begin{bmatrix} d_{11} & d_{12} & \dots & d_{1n} \\ d_{21} & d_{22} & \dots & d_{2n} \\ \dots & \dots & \dots & \dots \\ d_{n1} & d_{n2} & \dots & d_{nn} \end{bmatrix}$$
 (\vec{x} 11)

式中: $d_{ik} = \exp(r_{ik})_{\circ}$

②根据判断矩阵D, 计算权系数

$$w = [w_1, w_2, ..., w_n]^T$$

$$w_i = \left(\prod_{k=1}^n d_{ik}\right)^{1/n} / \sum_{k=1}^n \left(\prod_{k=1}^n d_{ik}\right)^{1/n} \qquad (\overrightarrow{\sharp} \ 12)$$

式中: $w = [w_1, w_2, ..., w_n]^T$ 为特征向量,作为该层次n个元素的权重向量。

最终本文选取的指标权重由熵值法、改进AHP法分别计算的权重取算术平均值获得。

(3) 耦合协调度模型

本文根据以往经验及相关文献,最终设计构建的耦合度模型为:

式中: A为农业、农村经济发展评价,R为农村公路评价; C为耦合度。

3.3 预测模型建立

(1) 经济-农村公路线性回归模型

基于耦合协调度结果,经过专家分析法给予模型回归系数。本文采用简单线性回归模型如下所示:

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_n + \sigma \qquad (\vec{\pm} 14)$$

其中: β_0 是截距, $\beta_1...\beta_n$ 为所选评价指标的回归系数, σ 是误差项。

(2)农业-农村公路影响模型

建立农业发展对农村公路建设需求显式预测框架,即 把农业发展水平转化为具体公路建设规模的预测模型。

设 $\mathbf{x}(t) = (x_1, x_2, ..., x_n)$,其中 $x_1, x_2, ..., x_n$ 分别对应表1中的发展指标,将上述指标对数化并做极差以及Z-score标准化,即

$$z_i(t) = \frac{\ln x_i(t) - \mu_i}{\sigma_i} \qquad (\vec{x}.14)$$

其中 μ_i 为对应指标 $x_i(t)$ 的均值, σ_i 为对应指标 $x_i(t)$ 的标准差,再利用综合权重求得农业发展综合指数,

$$ADS(t) = \sum_{i=1}^{8} w_i z_i(t)_{\circ}$$

设置目标变量预测期内农村公路路网密度 Y_1 (km/100 km²),预测期内农村公路总里程 Y_2 (10km²),预测期内通公路行政村数量 Y_3 (个),有

$$Y_1 = \text{RoadDensity}(t + \tau)$$

 $Y_2 = \text{RoadLength}(t + \tau)$ (式15)

建立模型

其中 A_k 为 "零农业增长" 时的基线公路规模。 τ 为预测提前期,弹性系数 $\beta_k=\lambda_k\sum_{i=1}^8w_i$

4 研究结果

4.1 农村公路与农业发展的相互关系

十九大报告中提出要实施乡村振兴战略,到2020年,乡村振兴取得重要进展,制度框架和政策体系基本形成;到2035年,乡村振兴取得决定性进展,农业农村现代化基本实现;到2050年,乡村全面振兴,农业强、农村美、农民富全面实现。为实现乡村振兴,实现农业现代化机械化自动化,农村公路作为起着服务保障作用的基石,其与农业的发展紧密相连。

四平市把"四好农村路"作为稳粮保供、做强冷链和促进城乡融合的关键抓手。截至2024年末,全市公路通车总里程达到8107km,其中国省干线和高速仅占不足20%,县、乡、村三级道路约6500km,成为田网、渠网之外覆盖面最大的基础设施网。2024年四平又启动乡村畅通工程,当年新改建农村公路341km、危桥改造11座,安防提升370km,专门整治"畅返不畅"路段271km,有效补齐了断头路、瓶颈桥等突出短板

吉林省内多数干线在省级公路体系中已具备二级及以上等级,但其向乡村末端的"毛细血管"延展仍显短板:一是县域节点冷链枢纽与乡村振兴示范带衔接不足,二是跨行政边界的县道升级缺乏统筹,导致"断头路"频现,三是桥涵荷载普遍较低,难以对接运输车辆的需求。从资源效率角度评估,近五年交通与农业部门联合开展的"通道式实施效果评价"显示,路网密度每增加10km/百km²,可带动县域第一产业增加值平均提高1.5%—1.8%;但当密度超过120km/百km²后,若无同步的等级提升与冷链节点建设,其边际贡献跌破0.4%。"数量型扩张"进入收益递减区后,如何通过结构调整与节点补链实现"质量型提升",成为下一阶段农村公路与农业版图耦合的主命题。

计算吉林省四平市农村公路与农业、经济发展耦合 度如表2所示。

表2	吉林省四平市2012-2022年耦合度计算结果

年份	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
经济	0.81	0.81	0.81	0.85	0.86	0.9	0.92	0.79	0.61	0.63	0.58
农业	0.8	0.8	0.79	0.88	0.78	0.9	0.82	0.77	0.66	0.7	0.63

由耦合度计算可以看出,四平市在2019-2022年期间,农村公路建设规模扩展,而与经济、农业发展耦合度降低。

综合以上分析,四平市农村公路的总里程虽然已与全市耕地规模大体匹配,但在支撑多样化农业版图的"走得畅、走得稳、走得准"上仍存在结构性短板。山区坡岭区(以伊通满族自治县为代表)桥涵净宽偏小、限载频繁且急弯陡坡密集,人参、葡萄等高附加值产业的鲜品冷链因"窄一限一弯"三重瓶颈而出现物流迟滞,旺季损耗率仍高于2%;亟须通过"山谷一体化"通道加固与节点式冷链补链来降低时效损失。相对地,平原粮畜带(以双辽市为代表)路网密度高、平坦度好,能够支撑玉米、大豆等主粮规模外运,却因道路结构强度滞后于散粮、秸秆重载车辆轴荷升级,秋收期间常态化"限重+排队"抬升周转成本,对跨区农机转场和奶牛冷链等高荷载场景仍存在薄弱桥涵和软基路段。唯有加快桥涵扩容、路基增强与快修机制,将"数量型扩张"转向"质量型提升",才能真正实现四平市农村公路与产业布局的深度耦合。

4.2 未来路网规模预测

基于回归分析,获取模型参数,形成预测结果如表 所3示。

5 不足与展望

本文主要基于人口、农业、经济等方面要素构建耦 合协调度,并根据耦合度结果建立回归预测模型。由于 本文仅选取吉林省四平市作为预测对象,模型不具备与研究思路一样的可拓展性。同时,简单线性回归的回归系数难以对非线性的要素指标进行拟合。在拓展了选取指标的范围后,以线性回归预测又会变得难以收敛。

未来研究可以基于本文的思路,拓展选取指标的范围,并采用拟合效果更佳的数学模型,从而做出更精准的预测,并通过影响因素变化分析各指标如何作用于预测结果,泳衣作为政府决策的重要参考。

表3 四平市2024-2026年农村公路规模预测结果

年份	农村公路规模(公里)
2024	7013
2025	7273
2026	7420

参考文献

[1]卫大匡.大推动理论[J].开发研究,1988(2):3.

[2]范家骧,高天虹.罗斯托经济成长理论(上)[J].经济纵横,1988(9):6.

[3]宋学文,张红艳,冯晓.农村公路研究现状综述[J].重庆交通大学学报(自然科学版),2005,24(003):77-79.

[4]孙根年.国家区域公路网密度与人口密度、人均 GNP关系的统计分析[J].西南交通大学学报,2000,35(2):220-223.

[5]佟强.基于人口迁移与出行预测的农村公路建设研究[D].吉林大学.2024.