公路工程施工管理与施工技术

肖宏亮 宁夏新积通建设工程有限公司 宁夏 吴忠 751100

摘 要:公路工程作为重要的基础设施,施工复杂且系统。本文围绕公路工程施工管理与技术展开,阐述了施工概述,包括工程分类、特点及基本流程。重点分析施工全过程管理要点,涉及准备、实施、后期及协同管理阶段的具体措施。同时介绍了路基、路面、桥涵与隧道等关键施工技术。研究旨在为公路工程施工提供全面的管理与技术参考,以保障工程质量,提高施工效率,为类似工程实践提供借鉴。

关键词:公路工程;施工管理要点;施工关键技术

引言:公路工程是国民经济发展的重要支撑,其施工质量与效率直接影响交通通行能力和安全。公路工程施工面临地形复杂、地质多样、气候影响大等挑战,对施工管理和技术应用提出更高要求。本文从公路工程施工概述入手,系统探讨全过程管理要点,涵盖各阶段管理核心,同时深入剖析关键施工技术,以期为提升公路工程施工水平、推动行业技术进步提供理论与实践指导。

1 公路工程施工概述

公路工程施工是一项复杂且系统性强的基础设施建设活动,其核心是通过科学组织与技术应用,将设计蓝图转化为满足交通需求的实体工程。从功能与等级划分来看,公路工程可分为高速公路、一级至四级公路、乡村公路等,不同类型的公路在技术标准、施工要求上差异显著。如高速公路强调高通行效率与安全性,要满足双向四车道及以上标准,路面平整度、抗滑性能等指标要求严苛;而乡村公路则更注重经济性与适应性,施工工艺相对简化。从施工特点而言,公路工程具有线性分布广、施工环境复杂的显著特征——线路往往穿越山地、河谷、城区等多样地貌,面临地形起伏大、地质条件多变(如软土、岩溶、高边坡等)、跨区域协调难度大等挑战,同时受气候影响显著,雨季、严寒等极端天气易导致施工中断。

公路工程施工的基本流程涵盖从前期准备到竣工验收的全周期管理。前期阶段包括项目招投标、施工图纸会审、施工组织设计编制、施工现场三通一平(通水、通电、通路及场地平整);施工阶段则按"分段流水、平行作业"原则推进,依次完成路基工程、路面工程、桥涵工程、附属工程等关键环节,各工序需严格遵循"自检、互检、交接检"的三检制度;竣工验收阶段需通过第三方检测、业主验收及政府主管部门备案,确保

工程符合设计及规范要求[1]。

2 公路工程施工全过程管理要点

2.1 施工准备阶段管理要点

施工准备阶段要从以下技术、资源、现场三个层面 系统把控,为施工奠基。(1)技术准备中,图纸会审 与技术交底是重点。组织设计、施工、监理单位共同参 与,核查设计文件的完整性、准确性和可行性,明确关 键工序技术要求,对不合理之处提出修改意见并归档。 技术交底分层级进行,项目总工程师向施工班组明确整 体技术方案, 班组技术负责人向操作工人说明具体工序 细节。编制施工组织设计,明确流程、节点控制措施和 应急预案。(2)资源准备要实现人、材、机合理配置。 人力资源要依据进度计划确定各工种人员数量与技能要 求,筛选合格施工队伍,签订合同明确职责与考核标 准。材料管理建立采购、检验、储存流程,核查主要材 料厂家资质、合格证及检测报告,抽样复试,杜绝不合 格材料;按进度制定供应计划,平衡储备与需求。机械 设备根据工艺要求配备,进场前检修调试,建立台账和 保养制度,保障施工时正常运行。(3)现场准备聚焦环 境优化与安全保障。详细勘察现场,核实地形、地质、 地下管线等,绘制相关图纸。规划临时设施,确保功能 明确、间距合理,符合安全卫生标准。做好场地平整与 排水, 预处理松软地基, 设置排水设施防积水。

2.2 施工实施阶段管理要点

施工实施阶段通过以下质量、进度、成本、安全的精细化管理,确保工程推进。(1)质量管理建立"事前控制、事中监督、事后验收"体系。事前确定工序技术参数,通过试验段验证优化。事中执行工序交接检验,关键工序实行旁站监理,实时记录数据,发现问题立即整改。事后按规范评定分项、分部工程,用专业设备检测实体,收集整理质量记录。(2)进度管理核心是计

划与实际的动态平衡。按总进度计划分解月、周、日作业计划,明确工序时间与衔接关系。建立跟踪机制,每日记录实际进度并与计划对比,出现偏差及时查找原因并调整。利用项目管理软件可视化管理,定期召开协调会,解决影响进度的问题。

成本管理围绕"降本增效",施工前编制预算并分解指标。(3)过程中控制人工、材料、机械等直接成本,及管理费等间接成本,建立审批制度。定期核算成本,分析差异并调整措施,每月考核班组成本,与绩效挂钩。(4)安全管理坚持"安全第一、预防为主",建立安全生产责任制,明确各方职责并签订责任书。对进场人员进行三级安全教育,特种作业人员持证上岗,定期开展交底和应急演练。针对高风险工序制定专项方案,设置防护设施并安排专人监护。

2.3 施工后期管理要点

施工后期管理确保工程顺利过渡到交付使用,重点 在以下验收、资料归档与缺陷修复。(1)竣工验收严 格遵循程序与标准,分阶段进行。施工单位先自检,合 格后提交竣工报告。监理单位预验收,核查资料并查验 关键部位,提出整改意见。施工单位整改后,建设单位 组织相关方正式验收,检查实体质量、观感及资料完整 性, 合格后签署证书。(2)资料归档保证完整、真实、 规范。收集工程全周期资料,包括前期文件、施工记 录、验收报告等。分类整理资料,按工程层次编排,编 写目录,确保编号统一、装订整齐。审核资料真实性, 如施工记录需签字, 检测报告由资质机构出具。按规定 移交资料并办理手续。(3)缺陷修复与运维衔接保障 交付后质量。缺陷责任期内,施工单位定期回访,修复 质量缺陷,方案经监理批准,完成后验收。期满后办理 移交,向接收方移交实体、资料及技术文件,说明工程 特点与维护要求,协助制定初期养护计划并提供技术 支持。

2.4 全过程协同管理要点

全过程协同管理通过以下组织协调、信息沟通与风险管控,实现要素联动,提升效率。(1)组织协调明确各方职责与协作机制,建立以项目经理为核心的管理机构,划分职能部门职责。加强与参建各方协调,定期召开会议,解决设计变更、工程款支付等问题。协调施工班组工序衔接,制定交接流程,明确条件与责任。(2)信息沟通构建畅通渠道,建立信息化平台,利用BIM、物联网等实时采集展示进度、质量等信息。规范传递流程,明确方式、接收人与时限。加强内部沟通,通过会议确保施工人员了解计划与要求,及时反馈问题。(3)风险管控建立

全过程识别、评估与应对机制。准备阶段识别地质、气候、技术、管理等风险,建立清单。评估风险概率与影响,确定等级,为高等级风险制定专项预案^[2]。

3 公路工程施工关键技术

3.1 路基工程施工关键技术

路基是公路的基础结构, 其稳定性直接影响路面使 用寿命,核心技术集中在以下地基处理、填筑压实及防 护排水三个方面。(1)地基处理技术。对于软土地基, 常用排水固结法,通过设置塑料排水板或砂井,加速地 基排水固结,配合堆载预压消除地基沉降;对含水率较 高的软基,可采用水泥土搅拌桩或高压旋喷桩进行深层 加固,形成复合地基提高承载力。对岩溶地区地基,采 用注浆填充法,通过地质雷达探测确定溶洞位置,注入 水泥浆或水泥砂浆填充溶洞, 防止路基塌陷。对季节性 冻土区地基,需设置隔温层,采用聚苯乙烯板等材料阻 断冻胀传导,同时优化排水系统避免地基积水。(2) 路基填筑与压实技术。填料选择需满足强度与粒径要 求,优先采用级配良好的砾类土或砂类土,黏性土需检 测液塑限, 避免使用高液限黏土。填筑过程实行分层摊 铺,每层厚度根据压实机械类型确定,一般控制在30cm 以内,摊铺后采用平地机整平,确保表面平整度符合要 求。压实工艺需根据填料类型选择压实机械,砂类土采 用振动压路机,黏性土采用光轮压路机,压实过程遵循 "先轻后重、先慢后快、先边后中"的原则,碾压次数 不少于6遍,确保压实度达到设计标准,每层压实后需进 行环刀法或灌砂法检测。(3)路基防护与排水技术。边 坡防护根据坡度与岩土性质选择方案,缓坡采用植草防 护, 陡坡采用浆砌片石护坡或喷射混凝土防护, 高边坡 需设置锚杆格构梁进行加固, 防止边坡滑塌。排水系统 需形成"截、排、疏"结合的体系,路堑顶部设置截水 沟拦截地表水,路堤两侧设置边沟、排水沟排除路面径 流,地下水位较高路段设置盲沟,采用透水土工布包裹 碎石形成排水通道,将地下水引至路基范围外。

3.2 路面工程施工关键技术

路面直接承受车辆荷载,其施工技术需兼顾强度、平整度与抗变形能力,以下沥青路面与水泥混凝土路面技术体系各有侧重。(1)沥青路面施工技术。混合料配合比设计需通过马歇尔试验确定最佳油石比,控制沥青用量在5%~6%之间,确保混合料具有良好的黏结性与耐久性。拌和过程中,严格控制加热温度,沥青加热至160~180℃,集料加热至170~190℃,拌和时间不少于45秒,保证混合料均匀一致,无花白料或结团现象。摊铺前需对下承层进行清扫与洒布透层油,采用沥青摊铺机

连续均匀摊铺,摊铺速度控制在2~6m/min,摊铺厚度根 据松铺系数确定,一般为设计厚度的1.15~1.3倍。压实 分为初压、复压与终压, 初压采用钢轮压路机稳压, 温 度不低于130℃;复压采用胶轮压路机揉搓,温度不低 于110℃;终压采用钢轮压路机消除轮迹,温度不低于 70℃,全程控制碾压速度在2~4km/h,避免推移或开裂。 (2) 水泥混凝土路面施工技术。模板采用钢模板,安装 前需检测刚度与平整度,内侧涂刷脱模剂,安装时采用全 站仪定位,确保中线、高程与宽度符合设计,模板接缝处 设置密封胶防止漏浆。混凝土拌和需严格控制水灰比, 一般不大于0.45, 坍落度根据施工方式确定, 滑模摊铺控 制在1~3cm, 人工摊铺控制在3~5cm, 拌和时间不少于90 秒,保证混凝土和易性。浇筑过程采用振捣棒与平板振捣 器配合振捣,确保混凝土密实,振捣完成后采用抹面机抹 平,再进行拉毛处理增加路面抗滑性能。养护需在浇筑完 成后12小时内覆盖保湿,采用洒水养护或薄膜覆盖养护, 养护期不少于14天,期间禁止车辆通行[3]。

3.3 桥涵与隧道工程施工关键技术

桥涵与隧道作为公路关键结构物,施工技术要满足结构受力安全与施工精度要求,以下桥梁、涵洞与隧道技术各有重点。(1)桥梁施工技术。基础施工中,钻孔灌注桩需采用冲击钻或旋转钻成孔,成孔后清孔至沉渣厚度小于5cm,钢筋笼分节吊装对接,焊接质量需符合规范,混凝土浇筑采用导管法,连续浇筑避免断桩。下部结构中,墩柱施工采用定型钢模板,模板安装垂直度偏差不超过1/1000,混凝土分层浇筑,振捣棒插入深度控制在50~100mm,确保密实。上部结构中,预制梁采用后张法预应力施工,钢绞线张拉需对称进行,张拉应力达到设计值后持荷2分钟锚固,孔道压浆采用真空辅助压浆工艺,确保浆体饱满。现浇梁采用支架法施工,支架预压消除非弹性变形,浇筑时从跨中向两端对称推进,控制混凝土内外温差不超过25℃。(2)涵洞施工技术。基础采用混凝土浇筑,地质较差时设置碎石垫层,确保基础

均匀受力。涵身砌筑采用M10水泥砂浆砌筑片石, 错缝 搭接,灰缝厚度控制在2~3cm,每砌筑50cm高度采用片 石混凝土浇筑找平层。洞口施工需与路基衔接平顺,八 字墙或一字墙基础嵌入原状土不小于50cm,洞口铺砌采 用C20混凝土,厚度不小于20cm,与涵身连接处设置沉 降缝,填塞沥青麻絮防水。(3)隧道施工技术。新奥法 施工中,根据围岩级别选择开挖方法, 【~Ⅱ级围岩采用 全断面开挖, Ⅲ~IV级围岩采用台阶法开挖, V级围岩采 用CRD法分块开挖,开挖轮廓线采用光面爆破控制,炮 孔间距控制在40~60cm,确保围岩扰动最小。初期支护紧 跟开挖面,喷射混凝土厚度不小于10cm,锚杆采用中空 注浆锚杆,长度根据围岩等级确定为2~4m,钢拱架间距 控制在50~100cm,与围岩密贴。二次衬砌采用模板台车 浇筑,浇筑前检查防水层完整性,混凝土坍落度控制在 14~16cm, 分层浇筑高度不超过30cm, 振捣棒避免触碰 防水层与钢筋,确保衬砌厚度与强度达标[4]。

结束语

公路工程施工管理与技术是确保工程顺利推进的关键。本文梳理的全过程管理要点,为施工各环节提供了明确指引;阐述的关键技术,为解决施工难题提供了有效方案。这些内容对提升工程质量、保障施工安全、提高建设效率具有重要意义。公路工程施工不断发展,未来需持续探索管理模式创新与技术升级,以适应新时代基础设施建设的需求,推动公路工程行业高质量发展。

参考文献

[1]陆晓杰. 公路工程施工管理与施工技术[J]. 建筑工程技术与设计,2020(6):1918.

[2]刘宁宁. 刍议公路工程施工管理与施工技术[J]. 建筑工程技术与设计,2019(15):2224.

[3]张嘉强. 公路工程施工技术管理与质量控制措施 [J]. 建材与装饰,2024,20(27):154-156.

[4]张立. 关于公路工程施工技术控制与管理的分析 [J]. 建筑与装饰,2022(11):104-105.