钢渣在沥青路面施工中的应用

刘挺亮

宁夏交通建设股份有限公司 宁夏 银川 750000

摘 要:本文围绕钢渣在沥青路面施工中的应用展开研究,系统阐述了钢渣沥青路面的应用价值与技术体系。首先概述钢渣作为路面材料的基本特性,随后重点分析其预处理技术、混合料配合比设计方法及施工工艺,并探讨施工全过程的质量控制措施。同时,从高温稳定性、低温抗裂性、水稳定性及抗滑性能四方面评价钢渣沥青路面的使用性能。研究表明,钢渣的合理应用可实现固废资源化,提升路面综合性能,为沥青路面施工提供技术参考。

关键词:钢渣;沥青路面;施工应用

引言:随着我国基础设施建设的快速发展,沥青路面对优质集料的需求日益增长,而工业固废的堆存处理也面临严峻挑战。钢渣作为钢铁工业的主要副产品,具有强度高、耐磨性好等特性,具备替代传统集料应用于沥青路面的潜力。将钢渣用于沥青路面施工,不仅能缓解天然集料资源短缺问题,还能实现固废资源化利用,符合绿色发展理念。然而,钢渣存在体积稳定性差、易吸水等问题,限制了其直接应用。本文针对钢渣在沥青路面施工中的关键技术进行探讨,包括预处理、配合比设计、施工工艺及质量控制,并评价其路用性能,旨在为钢渣沥青路面的推广应用提供理论与实践依据。

1 钢渣在沥青路面施工中概述

钢渣是钢铁工业生产过程中产生的主要固体废弃 物,源于炼钢阶段的造渣与脱氧反应。长期以来,钢渣 的处理多以堆存为主,这不仅占用大量土地,其含有的 部分成分还可能因吸水膨胀引发二次污染,成为制约钢 铁行业绿色发展的难题。近年来,随着资源循环利用理 念的深化以及道路建设对高性能集料需求的上升,钢渣 在沥青路面施工中的应用逐渐受到关注。钢渣具备诸多 优良特性, 其强度高、耐磨性好且嵌挤性优良, 这些特 点使其具备替代传统集料应用于沥青路面的潜力, 为沥 青混合料提供了坚实的物质基础。同时,钢渣表面粗糙 且多孔隙,能与沥青形成较强的黏结力,有助于提升混 合料的稳定性。不过,钢渣的应用也面临明显挑战,其 内部含有的某些成分遇水会发生缓慢水化反应,产生体 积膨胀,可能导致路面结构开裂;此外,钢渣较高的吸 水性也会影响沥青混合料的水稳定性, 需要通过相应技 术手段进行改良。当前、钢渣在沥青路面中的应用形式 主要有面层、基层或底基层集料, 其中面层应用对钢渣 的性能要求更为严格。国内外实践表明,经过合理处理 的钢渣能够满足沥青路面的各项技术指标,并且有助于 延长路面使用寿命、降低养护成本[1]。

2 钢渣在沥青路面施工中的应用技术

- 2.1 钢渣的预处理技术
- 2.1.1 陈化处理

陈化处理是钢渣预处理的重要步骤,旨在通过自然或人工方式加速钢渣中不稳定成分的水化反应,降低其体积膨胀性,提高钢渣的稳定性。自然陈化法是将钢渣堆放在露天场地,经过长时间的雨水冲刷和自然风化,使f-CaO和f-MgO与水反应生成氢氧化钙和氢氧化镁,体积膨胀后自解粉化。但此方法周期长,占用场地大,且受气候条件影响显著。 为缩短陈化时间,提高处理效率,可采用人工陈化法,如温水陈化、蒸汽陈化和蒸汽加压陈化法。其中,蒸汽加压陈化法通过将钢渣置于封闭容器中,利用饱和蒸汽加速水化反应,使处理时间大幅缩短,同时提高钢渣的稳定性。例如,日本住友金属工业公司研发的加压蒸汽陈化法,在0.5MPa下稳态陈化时间仅为2小时,处理后的钢渣稳定性高,粒度较小且均匀,非常适合用于沥青路面施工。

2.1.2 分级筛分与破碎处理

在钢渣预处理过程中,分级筛分与破碎处理是不可或缺的环节。分级筛分旨在根据钢渣的粒径大小进行分类,以满足不同沥青路面施工的需求。通过采用先进的分级筛分设备,如无轴滚筒筛选机,可实现钢渣的高效、准确筛分,确保各粒径范围的钢渣符合施工要求。当钢渣中存在大量超粒径颗粒时,需进行破碎处理以减小其粒径。破碎处理可采用颚式破碎机、圆锥式破碎机等设备,根据钢渣的硬度和粒径大小选择合适的破碎机和破碎工艺。破碎后的钢渣需再次进行筛分,以确保其粒径分布满足施工要求。通过分级筛分与破碎处理的结合,可实现钢渣的精细化加工,提高其在沥青路面施工中的利用率和性能表现。 在分级筛分与破碎处理过程

中,还需注意控制钢渣的含水率和杂质含量。含水率过高会影响钢渣的筛分效果和破碎效率,而杂质含量过高则可能影响沥青与钢渣的黏附性能,降低路面的耐久性。因此,在预处理过程中需对钢渣进行干燥和除杂处理,以确保其质量符合施工要求。

2.2 钢渣沥青混合料的配合比设计

2.2.1 原材料的选择

钢渣沥青混合料原材料的选择需兼顾性能适配性与 工程适用性,核心在于确保各组分协同作用以满足路面 使用要求。钢渣作为关键集料,不同于普通碎石,除需 优先选用经预处理后表面洁净、颗粒形状尽量接近立方 体以保证混合料嵌挤结构强度的产品,避免过多针片状 颗粒影响稳定性外,还应重点关注其体积安定性指标, 严格把控游离氧化钙含量、浸水膨胀率、压蒸粉化率等 参数,确保钢渣体积稳定。沥青的选择需结合工程所处 气候条件,考虑其黏结性、温度敏感性等指标,确保与 钢渣表面形成良好裹覆效果, 低温地区宜选用低温延展 性更优的沥青,高温地区则需侧重抗车辙性能。此外, 鉴于钢渣特性,还需关注环境安全指标,检测其放射性 核素及可浸出重金属含量。必要时可添加改性剂或抗剥 落剂, 前者提升沥青的高温稳定性和低温抗裂性, 后者 增强沥青与集料的界面黏结力,减少水损害风险。原材 料选择需通过试验验证各组分的相容性, 为配合比设计 提供可靠基础。

2.2.2 配合比设计方法

钢渣沥青混合料的配合比设计需遵循 "性能优先、 经济合理"的原则,通过多阶段试验确定最佳组分比 例。设计初期需明确混合料的用途(如面层或基层), 以此设定关键性能目标,包括抗变形能力、耐久性等。 由于钢渣与碎石集料密度差异较大,钢渣的密度是碎石 集料的1.24~1.31倍,若直接采用传统设计方法,钢渣 沥青混合料的实际级配与设计级配会产生较大差异。因 此,首先要进行矿料级配设计,采用"体积法",先确 定钢渣沥青混合料体积配比, 再基于各档集料的毛体积 相对密度转化为混合料质量配比, 确保设计级配与实际 级配的一致性,形成骨架密实结构或悬浮密实结构,保 证混合料具有足够的强度和空隙率。随后进行沥青用量 确定,通过试验测试不同沥青用量下混合料的黏结性、 稳定性及耐久性,以马歇尔试验为基础,结合击实次 数、试件密度等指标,初步确定最佳沥青用量范围。在 此基础上, 需通过性能验证试验, 如模拟高温、低温及 水损害条件下的性能测试,对配合比进行调整优化,最 终确定既能满足路用性能要求,又能控制工程成本的配 合比方案,为后续施工提供准确的配比参数。

2.3 钢渣沥青路面的施工工艺

2.3.1 拌和

钢渣沥青混合料的拌和是确保材料均匀性的关键环节,需严格控制拌和过程中的各项参数以保证混合料质量。拌和前需对钢渣集料进行预热处理,使其温度与沥青的拌和温度相匹配,避免因温差过大导致沥青裹覆不均。拌和时,先将钢渣集料与矿粉按比例投入拌和设备,干拌至均匀后再加入沥青,湿拌过程需保证沥青能充分裹覆每颗钢渣颗粒,形成稳定的混合料结构。同时,需注意观察混合料的色泽和状态,避免出现花白料或结团现象。拌和时间需根据材料特性灵活调整,过短则拌和不匀,过长可能导致沥青老化。拌和完成后,需对混合料的均匀性和温度进行初步检查,确保其符合施工要求后再进入下一环节^[2]。

2.3.2 运输

运输过程的核心是防止钢渣沥青混合料出现温度下降、离析或污染,需采取针对性措施保障材料性能稳定。运输车辆需提前清理干净车厢,避免残留杂质影响混合料质量,同时在车厢底部和侧面涂刷防粘剂,防止混合料黏结。装载混合料时,应分多次卸料以减少离析,运输使用专用保温车运输过程中需控制行车速度,避免急刹车或急转弯导致混合料分层离析。到达施工现场后,需检查混合料的温度和状态,符合要求后方可卸料,卸料时应缓慢操作,配合摊铺机的进料速度,确保连续供料且不产生堆积或中断。

2.3.3 摊铺

摊铺环节直接影响路面的平整度和厚度,需严格遵循施工规范以保证摊铺质量。摊铺前需对下承层进行清理和检查,确保表面洁净、平整,必要时进行预处理。摊铺机需提前调试好摊铺速度、厚度和宽度等参数,保证连续、均匀、不间断摊铺。摊铺过程中,摊铺机的螺旋布料器应保持稳定的料位高度,避免因料位波动导致摊铺厚度不均。钢渣沥青混合料的摊铺温度需严格控制,温度过高易导致摊铺后推移,过低则难以压实。同时,需安排专人在摊铺机后随时检查摊铺面,对局部离析或不平整处及时进行人工补料和修整,确保摊铺面平整、密实,无明显离析痕迹。

2.3.4 碾压

碾压是钢渣沥青路面形成密实结构、保障强度的关键工序,需按照"紧跟、慢压、高频、低幅"的原则进行操作。碾压过程分为初压、复压和终压三个阶段,各阶段需选用合适的压路机类型和碾压方式。初压主要是

稳定混合料结构,采用轻型压路机快速碾压,避免混合料推移;复压是达到规定密实度的核心阶段,选用重型压路机进行多次碾压,确保路面密实;终压则以消除轮迹、保证平整度为目的,采用轻型压路机碾压至无明显轮迹。碾压时需控制碾压温度,温度过高易产生推移变形,过低则难以压实。同时,碾压方向应从低到高、由边到中,碾压轮迹需重叠一定宽度,避免漏压。碾压过程中需避免压路机在路面上急停、转向或掉头,防止对已碾压路面造成破坏^[3]。

2.4 钢渣沥青路面施工质量控制

2.4.1 施工过程质量检测

施工过程质量检测是保障钢渣沥青路面性能的重要手段,需贯穿拌和、运输、摊铺、碾压全流程。在拌和阶段,重点检测混合料的均匀性,观察是否存在花白料、结团等现象,同时监测拌和温度,确保其在合理范围内。运输环节需检查混合料的温度损失情况,避免因温度过低影响后续施工。摊铺过程中,主要检测摊铺厚度、平整度和摊铺速度的稳定性,通过现场测量和视觉观察,及时发现局部离析或不平整问题。碾压阶段则需检测压实度和平整度,采用相应工具对碾压后的路面进行检查,确保达到设计要求的密实度,同时关注碾压温度变化,避免因温度不当导致压实效果不佳。各环节检测需做好记录,形成完整的质量追溯体系,为后续质量评估提供依据。

2.4.2 常见施工问题处理

钢渣沥青路面施工中可能出现多种问题,需针对性 采取处理措施以保障路面质量。若出现混合料离析,需 在摊铺前对离析部分进行人工拌匀,严重时应废弃离 析混合料,避免影响路面结构均匀性。对于摊铺后出现 的局部不平整,可由人工及时补料或刮平,确保表面平 整。碾压过程中若出现推移现象,应立即停止碾压,待 温度稍降后再继续,同时调整碾压速度和碾压方式。若 发现压实度不足,需分析原因,若因碾压次数不够,应 增加碾压遍数;若因温度问题,需控制好后续碾压温 度。对于路面出现的裂缝,早期可采用密封材料填补,防止水分渗入加剧损坏。处理问题时需遵循 "及时发现、果断处理、不留隐患" 的原则,避免小问题扩大为严重质量缺陷。

2.4.3 后期养护质量控制

后期养护是延长钢渣沥青路面使用寿命的关键,需制定系统的养护计划并严格执行。日常养护中,需定期清理路面杂物和积水,保持路面洁净,避免杂物堵塞排水通道导致水损害。定期对路面进行巡查,及时发现裂缝、坑槽等早期病害,对轻微裂缝采用密封处理,对坑槽则需切割、清理后填补混合料并压实。根据路面使用情况,适时进行预防性养护,如喷洒养护剂,增强路面抗老化能力和防水性能。同时,需关注钢渣沥青路面的特殊特性,避免使用可能对钢渣或沥青造成损害的养护材料。养护过程中需做好记录,分析病害发展规律,为后续养护方案优化提供参考,确保路面长期保持良好的使用性能^[3]。

结束语

综上所述,钢渣在沥青路面施工中的应用,是资源循环利用与道路工程创新的有效结合。从预处理到配合比设计,再到施工工艺与质量控制,一系列技术手段为钢渣的合理应用提供了保障。其不仅缓解了钢渣堆存的环境压力,还凭借优良性能提升了路面质量,符合绿色发展理念。随着技术的不断完善,钢渣沥青路面的应用前景广阔,未来需持续优化技术体系,推动其在更多工程中推广,为交通建设的可持续发展注入新动力。

参考文献

[1]冯文琦.钢渣沥青混凝土技术应用于路面施工中的质量管理与控制[J].民营科技,2021(01):167.

[2]李超,陈宗武,谢君,吴少鹏,肖月.钢渣沥青混凝土技术及其应用研究进展[J]. 材料导报,2022,31(03):86-95+122.

[3]潘放,李军,赵平,等. 钢渣在沥青路面基层中的应用 [J]. 合肥工业大学学报(自然科学版),2002,25(6):1218-1221