城市轨道交通综合监控系统智能发展探讨

杨 健 上海佩琪信息技术有限公司 上海 200000

摘 要:通过综合监控系统的架构、功能及发展历程,分析了当前系统面临的数据处理压力、各系统系统集成难题、安全风险以及智能化应用不足等挑战。进一步指出,大数据技术、人工智能技术、物联网技术和云计算技术是推动综合监控系统智能发展的关键。通过这些技术,系统能够实现数据智能分析与辅助决策、车站运营场景智能化、能效管理智能化以及设备运维智能化等多个应用场景。这些应用将极大提升城市轨道交通的运营效率、乘客体验和安全水平。

关键词:城市轨道交通;综合监控系统;智能化发展

1 城市轨道交通综合监控系统概述

1.1 系统架构与组成

城市轨道交通综合监控系统通常采用"中央一车站一现场"三级架构,形成覆盖全线的监控网络。中央级位于控制中心,是系统的核心决策层,由服务器集群、调度工作站、数据存储设备及可视化平台组成。它负责汇总全线数据,实现全局监控、应急指挥和数据分析,如北京地铁指挥中心可实时调取各线路运行数据,进行跨线协同调度;车站级是区域控制中心,部署在各车站控制室,集成电力监控(PSCADA)、环境监控(BAS)、火灾报警(FAS)等子系统的控制器。通过工业以太网与中央级通信,同时连接现场设备,承担本车站的实时监控与联动控制任务。现场级是数据采集终端,包括各类传感器(温度、湿度、烟雾传感器等)、执行器(闸机、风机控制器等)和智能设备(摄像头、读卡器等)。这些设备通过工业总线或无线通信技术接入车站级系统,构成监控的"神经末梢"。

1.2 系统功能

系统的核心功能是实时监控与联动控制。它能实时采集全线设备状态数据,如列车位置、站台温度、供电参数等,并通过预设逻辑实现子系统联动,例如火灾发生时,自动触发FAS报警、BAS启动排烟、ACS打开应急通道。同时,系统具备数据存储与分析能力,可记录设备运行历史数据、故障信息等,为运营优化提供依据。此外,应急指挥功能也是关键,当发生突发情况时,能快速调取现场数据,辅助调度人员制定处置方案,如上海地铁在台风天气时,通过系统实时监测线路积水情况,及时启动停运预案^[1]。

1.3 系统发展历程与现状

早期的综合监控系统以"信息集成"为主,各子系

统独立运行,仅通过简单接口实现数据共享,联动能力有限。2010年后,随着技术进步,系统进入"深度集成"阶段,采用统一的通信协议和数据库,实现了子系统的紧密协同,如广州地铁3号线的系统可在10秒内完成火灾场景的全系统联动。目前,国内多数城市的轨道交通已建成综合监控系统,但智能化水平参差不齐。一线部分城市如深圳、杭州已引入AI算法进行客流预测和设备故障预警,其余而部分二三线城市仍以人工监控为主,系统的数据分析和自主决策能力较弱。

2 城市轨道交通综合监控系统面临的挑战

2.1 数据处理压力

随着轨道交通网络的扩展,系统接入的设备数量呈指数级增长。以一条地铁线路为例,其监控点可达数万个,每天产生的数据量超过 100GB,涵盖视频、传感器、设备状态等多种类型。传统的数据库和服务器难以应对如此海量的数据处理需求,导致数据延迟、存储溢出等问题。例如,某城市地铁在早晚高峰时段,因客流数据激增,系统出现数据刷新延迟达 30 秒,影响了调度决策的及时性。此外,多线路联网运营后,跨线数据交互频繁,进一步加剧数据处理压力。

2.2 系统集成难题

城市轨道交通的子系统往往由不同厂商提供,如 PSCADA系统来自A厂商,FAS系统来自B厂商,各系 统采用的通信协议、数据格式存在差异,导致集成时需 开发大量接口进行适配。部分老旧线路的子系统因技术 过时,甚至无法提供标准化接口,只能通过人工抄录数 据,造成"信息孤岛"。例如,某地铁线路的门禁系统 与监控系统无法联动,安保人员需在两个系统间反复切 换,降低工作效率。

2.3 安全风险问题

综合监控系统涉及列车运行、乘客安全等关键信息,其安全性至关重要。当前,系统面临网络攻击、数据泄露等风险。一方面,随着系统接入互联网(如远程运维需求),黑客可能通过漏洞入侵系统,篡改数据或控制设备,如 2023 年某城市地铁曾遭遇勒索病毒攻击,导致部分监控终端瘫痪。另一方面,内部人员操作不当也可能引发安全事故,如误删关键数据、违规修改参数等^[2]。另外,系统的物理安全也不容忽视,如服务器机房的防火、防雷措施不到位,可能导致硬件损坏。

2.4 智能化应用不足

尽管部分系统引入了智能化技术,但应用深度和广度有限。在设备故障诊断方面,多数系统仍依赖人工巡检,仅能实现故障报警,无法预测潜在问题。例如,某地铁的电梯系统常因轴承磨损引发故障,但系统无法提前预警,导致停运维修频繁;在客流管理上,现有系统多采用固定阈值触发限流措施,缺乏动态调整能力,难以应对突发大客流。

3 城市轨道交通综合监控系统智能发展的关键技术

3.1 大数据技术

大数据技术是城市轨道交通综合监控系统智能发展的重要支撑。它能够处理海量、复杂的数据,为系统的智能化应用提供数据基础。大数据技术具有海量数据存储、快速数据处理、多类型数据融合等特点。通过分布式存储技术,如Hadoop分布式文件系统(HDFS),可以实现对海量监控数据的高效存储,满足系统对数据存储容量和扩展性的需求。同时,大数据处理框架,如MapReduce、Spark等,能够快速处理大量的数据,提高数据处理效率,使得系统能够及时对实时数据进行分析和处理,为实时监控和决策提供支持。此外,大数据技术还能够实现多类型数据的融合分析,将结构化数据、非结构化数据等不同类型的数据整合在一起进行分析,挖掘数据之间的关联关系,为系统的智能化应用提供更全面、深入的信息。

3.2 人工智能技术

人工智能技术在城市轨道交通综合监控系统的智能 发展中发挥着核心作用,它能够使系统具备自主学习、 推理、决策等能力。机器学习是人工智能的重要分支, 通过构建机器学习模型,系统可以从大量的历史数据中 学习到设备运行规律、客流变化模式等知识,并利用这 些知识进行预测和决策。例如,利用机器学习算法对设 备的运行数据进行分析,可以建立设备故障预测模型, 提前预测设备可能发生的故障,实现预防性维护。深度 学习则是机器学习的一种更高级形式,它能够处理复杂 的非结构化数据,如图像、语音等。在城市轨道交通综合监控系统中,深度学习可以用于视频监控分析,如自动识别监控画面中的异常行为(如打架斗殴、非法入侵等)、识别列车部件的缺陷等,提高系统的安防能力和设备检测效率。此外,自然语言处理技术可以实现人与系统之间的自然语言交互,方便工作人员查询信息、下达指令等,提高工作效率。

3.3 物联网技术

物联网技术为城市轨道交通综合监控系统提供全面的感知能力,实现了对现场设备和环境的实时、精准监测。物联网技术通过在现场设备和环境中部署大量的传感器、射频识别(RFID)标签等感知设备,能够实时采集设备的运行参数、环境参数、人员和物品的位置信息等。这些感知设备通过无线或有线网络将采集到的数据传输至监控系统,实现了对整个轨道交通系统的全面感知。例如,在列车上安装各类传感器,可以实时监测列车的速度、加速度、振动、温度等参数,及时发现列车的异常情况;在车站内部署客流传感器,可以实时采集客流数据,为客流调度和安全管理提供支持。物联网技术还可以实现设备的智能化识别和管理,通过RFID技术对设备进行标识和跟踪,方便设备的维护和管理^[3]。

3.4 云计算技术

云计算技术为城市轨道交通综合监控系统提供了强大的计算和存储资源,提高了系统的灵活性和扩展性。云计算技术通过将计算资源、存储资源和软件应用集中在云端数据中心,实现了资源的共享和按需分配。城市轨道交通综合监控系统可以利用云计算平台的强大计算能力,快速处理海量的监控数据,进行复杂的数据分析和模型训练。同时,云计算平台提供的弹性扩展能力使得系统能够根据数据量和业务需求的变化,灵活调整计算和存储资源,避免了资源浪费。此外,云计算技术还支持多终端访问,调度人员和工作人员可以通过不同的终端设备(如电脑、手机、平板等)随时随地访问云端的监控系统,查看运营数据和监控画面,提高了工作的灵活性和效率。

4 城市轨道交通综合监控系统智能发展的应用场景

4.1 数据智能分析与辅助决策

通过运用大数据技术和人工智能技术对海量的运营 数据进行深度分析,可以为调度人员提供科学、精准的 决策支持;在列车调度方面,系统可以对历史列车运行 数据、实时客流数据、天气数据等进行分析,建立列车 运行调度模型。该模型能够根据实时情况预测客流变化 趋势,动态调整列车的发车频率、运行速度和停靠站点 等,以提高列车的准点率和运营效率,减少乘客的等待时间。例如,在早晚高峰时段,根据历史数据和实时客流监测,系统可以自动增加列车班次,缩短发车间隔;在应急决策方面,当发生突发事件(如火灾、设备故障、自然灾害等)时,系统能够快速收集和分析相关数据,如事故发生的位置、影响范围、人员伤亡情况等,并根据预设的应急处理预案和历史案例,为调度人员提供最佳的应急处理方案。

4.2 车站运营场景智能化

车站运营场景智能化是提升车站运营效率和服务质 量的重要途径。通过综合运用物联网技术、人工智能技 术等,实现车站运营的自动化、智能化管理。系统通过 部署在车站各个区域的客流传感器和视频监控设备,实 时采集客流数据,并利用人工智能算法对客流数据进行 分析, 预测客流变化趋势。当监测到某一区域客流过于 拥挤时,系统可以自动启动预警机制,通过车站的广播 系统、显示屏等向乘客发布拥挤提示和疏导信息, 引导 乘客合理分流。系统还可以联动车站的闸机、自动售票 机等设备,调整其运行状态,如增加闸机、售票机的开 放数量、提高自动售票机的售票速度等,提高客流通过 效率;通过传感器实时监测车站内的温度、湿度、空气 质量、照度等环境参数,并根据预设的环境标准和乘客 的舒适度需求, 自动调节车站的空调系统、通风系统、 照明系统等设备。例如, 当监测到车站内温度过高时, 系统可以自动提高空调的制冷功率; 当车站内光线较暗 时,系统可以自动调亮照明设备,以为乘客提供舒适的 乘车环境。

4.3 能效管理智能化

能效管理智能化是城市轨道交通实现节能降耗、绿色运营的重要手段。通过对轨道交通系统的能源消耗进行实时监测、分析和优化控制,提高能源利用效率。系统可以通过安装在各类用电设备(如列车、空调、照明、电梯等)上的能耗传感器,实时采集设备的能耗数据,并将这些数据上传至能效管理平台。能效管理平台利用大数据技术对能耗数据进行分析,建立能耗模型,识别能源消耗的规律和异常情况^[4]。例如,分析不同时间段、不同季节的能耗数据,找出能源消耗的高峰期和低谷期,为制定合理的能源供应计划提供依据;基于能耗分析结果,系统可以实现对能源消耗的智能控制。例

如,对于车站的照明系统,可以根据车站内的客流情况和出入口自然光强度,自动调节照明亮度和开启数量;对于空调系统,可以根据室内外温度、客流密度等因素,智能调节空调的运行参数,避免能源浪费。同时,系统还可以对设备的能耗进行评估和优化,识别高能耗设备,并提出节能改造建议,以降低整体能源消耗。

4.4 设备运维智能化

设备运维智能化能够提高设备的可靠性和使用寿命,降低运维成本。通过对设备的运行状态进行实时监测和分析,实现设备的预防性维护和智能化管理。系统利用物联网技术实时采集设备的运行参数(如温度、压力、振动、电流、电压等)和状态信息,并将这些信息传输至设备运维管理平台。平台利用人工智能算法对设备的运行数据进行分析,建立设备故障预测模型。通过该模型可以提前预测设备可能发生的故障类型、故障时间和故障位置,并及时向运维人员发出预警信息,提醒运维人员进行预防性维护。例如,对于列车的牵引电机,通过分析其振动数据和温度数据,可以预测电机的磨损情况,提前安排检修,避免电机在运行过程中突然故障。

结束语

综上所述,城市轨道交通综合监控系统的智能发展 是一个复杂而重要的过程。通过引入大数据技术、人工 智能技术、物联网技术和云计算技术,系统能够克服现 有挑战,实现更高效、智能的运营。未来的综合监控系 统将更加注重数据的深度挖掘和应用,以提供更加精准 的决策支持和智能化服务。随着技术的不断进步,我们 期待城市轨道交通综合监控系统能够迈向更加智能、高 效和可持续的未来。

参考文献

[1]王扬,陈贞宇,丁涛,等.轨道交通综合监控系统报警功能分析[J].工程建设与设计,2020(22):230-231

[2]张鹏雄.城市轨道交通综合监控系统技术创新与实践探索[J].铁路通信信号工程技术,2020,17(5):57-62.

[3]万传风,杨雨明,秦暄阳.中国城市轨道交通运营维保 后市场发展分析[J].现代城市轨道交通,2020(3):7-11.

[4]齐伟.综合监控系统在城市轨道交通工程中的应用分析[J].中国科技期刊数据库工业A,2022(01):239-241.