预拌流态固化土在深基坑回填工程中应用

李红全 成都建工集团有限公司 四川 成都 610031

摘 要:深基坑回填对工程安全至关重要,但传统材料存在密实度不足、边角填充困难等问题,难以应对复杂地质与敏感环境挑战。本文研究预拌流态固化土在深基坑回填工程中的应用。首先明确其定义为工厂预拌的高流动性自密实混合料,按材料组成、强度等分为多类。结合深基坑回填的特点,分析材料场景适配性,提出基于地质、支护结构的选型方法。阐述设计参数确定原则,包括强度分层设定、流动性匹配及配合比优化。系统梳理施工工艺,涵盖前期准备、运输浇筑、分层养护及特殊部位处理要点,明确质量验收标准与后期监测要求。研究表明,该材料可解决传统回填缺陷,为深基坑回填提供技术支撑。

关键词: 预拌流态固化土; 深基坑回填工程; 技术要点; 具体应用

引 言: 预拌流态固化土作为新型材料,凭借高流动性、自密实性及固化稳定性展现应用优势。本文基于工程实践,先界定其定义与分类,分析深基坑回填技术特点,再研究应用场景适配性与设计参数确定方法,系统阐述施工工艺与质量控制要点,旨在为该技术规范化应用提供理论与实践参考,推动回填工程技术升级。

1 预拌流态固化土的定义与分类

1.1 预拌流态固化土的定义

预拌流态固化土是一种创新型工程回填材料,其组成以水泥、石灰等胶凝材料为基础,搭配砂石以及粉煤灰、矿渣等工业废渣作为骨料,同时包含无土料形式,再掺入水和减水剂、早强剂等功能性外加剂,经工厂标准化计量并强制搅拌而成,具有高流动性和自密实特点的流态混合料。该材料的核心特性在于"预拌"与"流态固化"的结合。在专业搅拌站完成配比搅拌后,通过罐车运输至施工现场,无需机械振捣,仅依靠自身流动性就能填充基坑空间,经水化反应逐渐固化,最终形成拥有一定强度和稳定性的结构体。

从技术层面看,它是传统回填材料的升级产物,融合了混凝土的胶凝固化机理和土体的填充特性,既保留了土体对环境的适应能力,又借助胶凝材料的水化作用提高了强度。与传统回填土相比,其显著优势是流动性可控,固化后整体性好、体积稳定性高,能有效解决深基坑回填时"边角压实不到位""分层沉降不均"等技术难题。

1.2 预拌流态固化土的分类

根据核心技术参数与应用场景的差异,预拌流态固 化土可分为以下主要类别:按胶凝材料组成可分为水泥 基固化土、复合胶凝固化土(水泥-石灰复合、水泥- 矿渣复合等),其中复合胶凝型因成本较低、环保性好,在工业废渣丰富地区应用广泛。按28天无侧限抗压强度等级可划分为低强度(≤3MPa)、中强度(3-10MPa)和高强度(>10MPa)三类,低强度适用于一般回填填充,中高强度可用于对承载力有要求的基坑支护回填。

按流动度等级可分为自流平型(扩展度 \geq 500mm)、易流平型(300 ~ 500mm)和可控流型(< 300mm),自流平型适用于复杂几何形状基坑,可控流型则用于需限制扩散范围的特殊部位。按功能性可分为普通型、抗渗型(渗透系数 \leq 10^{-7} cm/s)、早强型(3天强度 \geq 70%设计强度)和环保型(重金属离子浸出量符合GB16889-2024标准),抗渗型多用于地下水位较高的基坑工程,环保型则适用于生活垃圾填埋场等敏感环境回填 11 。

2 深基坑回填工程技术特点

深基坑回填作为地下工程施工的关键环节,其技术特点集中体现在以下方面。(1)环境条件的复杂性。深基坑通常位于城市建成区或地质条件复杂区域,面临多层地质结构(如软土、砂土、岩层交互分布)、高地下水位及周边敏感环境(临近建筑物、地下管线、轨道交通)的多重约束。回填过程需平衡水土压力,避免因荷载突变引发基坑边坡失稳、周边地面沉降或管线破损,对回填材料的力学稳定性和变形协调性提出严苛要求。(2)质量控制的高精度。深基坑回填需达到"密实均匀、沉降可控"的核心目标,压实度普遍要求 ≥ 93%,关键区域需 ≥ 95%。由于基坑空间狭窄、阴阳角多,传统回填材料难以充分填充边角缝隙,易形成空洞或松散区,成为后期沉降隐患。回填质量直接影响地基承载力传递,需通过分层压实、强度检测等手段确保整体结构

完整性,避免不均匀沉降导致上部结构开裂。(3)施工过程的高约束性。深基坑回填受限于有限作业空间,大型压实设备难以进入,小型机械作业效率低;且需配合主体结构施工进度,存在交叉作业干扰^[2]。

3 预拌流态固化土回填施工工艺与技术要点

3.1 施工前期准备

预拌流态固化土深基坑回填施工前需完成系统性准备工作。技术准备阶段,应组织施工团队熟悉设计图纸、地质勘察报告及专项施工方案,明确回填范围、标高及强度指标,针对基坑深度、周边环境等特点进行技术交底,编制应急处理预案。同时需核对材料配比参数,确保预拌流态固化土的扩展度、初凝时间等性能指标满足设计要求,并完成配比验证试验。现场准备方面,需清理基坑内杂物、积水及浮土,对坑底进行平整碾压,压实度不低于90%;检查基坑边坡稳定性,对松动部位进行加固处理,设置临时排水系统,确保降水深度低于回填面500mm以上。周边环境防护应搭建围挡,划分材料堆放区与作业区,距离基坑边缘不小于2m,避免荷载扰动边坡。

材料与设备准备需核验预拌流态固化土的出厂合格证及检测报告,胶凝材料、骨料等原材料应符合现行标准;搅拌运输车、布料泵等设备需进行调试,确保计量系统精度误差不超过±2%,同时配备备用设备以防故障。最后对施工人员开展专项培训,考核合格后方可上岗,重点培训材料特性、浇筑工艺及安全操作规范。

3.2 材料运输与现场浇筑流程

预拌流态固化土的运输需采用专用搅拌运输车,运输过程中罐体应保持3~5r/min的慢速转动,防止材料离析或初凝。运输时间从搅拌完成至现场卸料不宜超过2h,若环境温度高于30℃,需缩短至1.5h内,超过时限的材料应废弃处理。车辆进场前需冲洗轮胎,避免带入杂物污染基坑,卸料前应检测材料扩展度,合格后方可使用,扩展度偏差超出±50mm时需退回搅拌站。

现场浇筑需遵循"分区定点、分层推进"原则,布料点间距控制在2~3m,采用软管导流时禁止直接冲击边坡或预埋件。浇筑过程中若出现骨料堆积,应使用铁锹分散拌匀,严禁加水调整稠度。每层浇筑厚度按3.3节要求执行,上层浇筑需在下层材料初凝前完成,间隔时间通过现场试块检测确定。浇筑至设计标高时,表面应略高于设计值50~100mm,待固化收缩后再进行修整。浇筑过程中需安排专人监测,记录材料进场时间、扩展度及浇筑量,同时观察基坑边坡位移及渗漏情况,发现异常立即停止施工并启动应急预案。浇筑完成后及时清理

散落材料,保持作业面整洁。

3.3 分层浇筑与养护技术规范

预拌流态固化土在深基坑回填的分层浇筑环节,需严格控制浇筑厚度,每层浇筑高度宜为300~500mm,且上下层浇筑间隔时间应根据环境温度及材料初凝时间确定,一般不超过24小时,以确保层间结合紧密。浇筑时应采用多点布料、连续推进的方式,布料点间距不宜大于3m,避免单点堆积造成离析,同时通过人工辅助导流,确保边角、管道周边等特殊部位填充饱满。

养护环节需在浇筑完成后12小时内启动,采用覆盖保湿膜或洒水养护的方式,保持固化土表面湿润。养护期根据设计强度要求确定,当设计无明确规定时,不应少于7天;若环境温度低于5℃,需采取保温措施,严禁洒水养护。养护期间应设置警示标识,禁止车辆碾压或重物堆放,避免对未完全固化的结构造成扰动。

3.4 特殊部位施工处理措施

边坡区域回填需强化界面处理,先清理坡面上的浮土、松动岩体,采用高压水枪冲洗干净后,涂刷水泥净浆或界面剂,增强粘结力。浇筑时需控制材料流动速度,在坡脚处设置临时挡坎,高度为分层厚度的1/2,待材料填充至挡坎高度后缓慢拆除,使材料沿坡面自然流淌,确保边坡角填充密实。对于坡度大于1:1.5的陡坡,需分层增设钢丝网或土工格栅,提升抗剪性能,格栅搭接长度不小于200mm。

管线周边回填需采取精细化操作,先在管线两侧500mm范围内采用小型浇筑设备,如手提式浇筑泵,控制浇筑压力 ≤ 0.2MPa,避免压力过大导致管线位移。浇筑时需从管线底部对称推进,确保材料均匀包裹管线,严禁单侧堆积。管线顶部500mm范围内分层厚度减半,控制在200~300mm,采用人工平仓,必要时用橡胶锤轻敲管壁辅助排气^[3]。

4 预拌流态固化土在深基坑回填工程中的具体应用

4.1 应用场景的适配性选择

预拌流态固化土在深基坑回填中的应用要基于工程实际条件进行场景适配。对于地质条件复杂的深基坑,如存在软土地层、砂卵石夹层或高含水率区域,优先评估材料的抗渗性与体积稳定性,通过调整胶凝材料用量控制渗透系数 $\leq 10^{-7}$ cm/s,同时掺入适量膨胀剂补偿收缩,膨胀率宜控制在0.02%-0.05%。

针对不同结构类型的基坑,如支护结构为排桩、地下连续墙或土钉墙的基坑,回填时需根据支护体系的承载特性调整材料强度。排桩支护基坑回填材料28天无侧限抗压强度宜≥3MPa,地下连续墙支护基坑可适当降低

至2-3MPa,以减少对支护结构的附加荷载。在周边环境敏感区域,如临近既有建筑物、地铁线路或输油输气管道的基坑,需控制材料浇筑时的流动扩散范围,通过添加增稠剂将扩展度调整至300-400mm,避免对周边结构产生挤压变形。

4.2 设计参数的确定方法

设计参数的确定需围绕材料性能与工程要求建立对应关系,首要明确强度指标,根据回填深度分层设定:浅层回填(0-3m)28天强度 ≥ 1.5MPa,中层回填(3-6m) ≥ 2.5MPa,深层回填(>6m) ≥ 3MPa,以满足不同深度的荷载传递需求。流动性参数需结合基坑体型确定,规则矩形基坑扩展度宜为400-500mm,异形基坑(含较多阴阳角、管线密集区)需提升至500-600mm,确保边角填充密实。

配合比设计需遵循"就地取材、性能匹配"原则,胶凝材料用量根据强度要求控制在200-350kg/m³,其中工业废渣掺量可占胶凝材料总量的30%-50%,需通过活性指数试验验证(28天活性指数 ≥ 70%)。用水量需结合骨料含水率动态调整,水胶比宜控制在0.5-0.7,确保坍落度损失在2小时内不超过50mm。外加剂掺量需经试配确定,减水剂掺量通常为胶凝材料用量的1%-3%,早强剂在低温施工时掺量可提高至3%-5%。

4.3 施工过程的关键控制

施工过程控制要贯穿材料运输至浇筑成型的全流程,材料到场后需逐车检测流动度与含气量,扩展度偏差应控制在±50mm内,含气量宜为3%-5%,超标材料需经技术复核后方可使用。浇筑前需再次清理基坑,确保基底无积水、无粒径>100mm的杂物,对基坑侧壁进行洒水湿润,湿度控制在80%左右,避免侧壁吸水导致材料失水开裂。

浇筑过程严格执行分层厚度要求,机械布料时每层厚度 ≤ 500mm,人工辅助布料时 ≤ 300mm,分层浇筑间隔时间需根据环境温度调整:常温(15-25 $^{\circ}$ C)间隔 ≤ 4小时,高温(> 25 $^{\circ}$ C) ≤ 3小时,低温(5-15 $^{\circ}$ C) ≤ 2小时。浇筑面需保持水平上升,高差不宜超过300mm,避免

形成施工冷缝。对于深度超过5m的基坑,要在侧壁设置导流槽,导流槽间距3-5m,坡度1:3,引导材料均匀流动。

4.4 质量验收与后期监测

质量验收需执行分层验收制度,每层浇筑完成后24小时内进行表观质量检查,重点核查是否存在蜂窝、麻面、空洞等缺陷,缺陷面积占比需 ≤ 1%。强度验收需按每500m³留置3组试块,分别检测7天、14天、28天无侧限抗压强度,各组强度平均值需 ≥ 设计值,最小值 ≥ 0.85倍设计值。对于有抗渗要求的基坑,需每1000m³留置1组抗渗试块,进行渗透系数试验。

后期监测需设置沉降观测点与位移监测点,观测点沿基坑周边每10-15m布设一个,回填完成后前3个月每周监测1次,3-6个月每2周1次,6个月后每月1次,累计观测时间不少于1年。沉降速率需控制在 ≤ 2mm/天,累计沉降量 ≤ 50mm;水平位移速率 ≤ 1mm/天,累计位移 ≤ 30mm。发现监测数据超限时,需及时分析原因,采取补充浇筑或注浆加固等措施,确保回填体长期稳定性^[4]。

结束语

本文围绕预拌流态固化土在深基坑回填的应用构建 技术体系,明确材料特性与分类,针对性解决深基坑回 填技术难点。通过场景适配、参数优化、工艺规范及质 量控制,形成完整应用方案。实践证实,该材料能提升 回填密实度、控制沉降,克服传统工艺缺陷,同时提高 施工效率、符合环保要求。研究成果为深基坑回填提供 可靠技术方案,对推动地下工程回填技术创新与标准化 具有重要实践意义。

参考文献

[1]王丽筠,孙伟东,文劲博.预拌流态固化土在深基坑回填工程中应用[J].建筑技术,2021,52(4):460-461.

- [2]肖玉宝.预拌流态固化土在深基坑狭窄肥槽回填中的应用[J].建筑技术,2025,56(3):314-316.
- [3]魏冉.浅析预拌流态固化土在深基坑狭窄肥槽回填中的应用[J].房地产导刊,2022(1):80-82.
- [4]林蜀谌.预拌流态固化土在狭窄深基坑回填中的应用[J].汽车博览,2022(24):242-244.