风电场环保工作的挑战与应对策略研究

迟铭

大唐东北电力试验研究院有限公司 吉林 长春 130000

摘 要:在全球低碳转型背景下,风电场环保工作意义重大,关乎气候治理、产业可持续发展及全生命周期效益。但面临生态环境影响、噪音与视觉污染、废弃物处理等挑战。可通过加强生态保护与修复、控制污染、优化废弃物处理应对,同时需完善管理体系、强化技术创新、提升公众意识提供保障。

关键词:风电场环保工作;挑战;应对策略研究

引言:在全球能源低碳转型浪潮下,风电场作为清洁能源主力军,其环保工作意义重大,不仅关乎气候治理目标的实现,更影响着产业可持续发展与全生命周期效益。然而,风电场在生态、噪音、视觉及废弃物处理等方面面临诸多挑战。为此,需从加强生态保护与修复、控制污染、优化废弃物处理等方面制定应对策略,并通过完善管理体系、强化技术创新、提升公众意识等保障措施,推动风电场环保工作迈向新高度。

1 风电场环保工作的重要性

在全球能源结构加速向低碳化转型的大背景下,风 电场作为清洁能源的核心支柱, 其环保工作具有多维度 的战略价值。从气候治理维度看,风电通过将风能高效 转化为电能,实现了能源生产全过程的零碳排放。据权 威机构测算,一座装机容量500MW的风电场,年发电量 可达14亿千瓦时,相当于替代标准煤42万吨,减少二氧 化碳排放112万吨。这种规模化减排效应,为全球温控 目标提供了关键技术支撑,是应对气候危机的核心解决 方案之一。(1)从产业可持续发展视角分析,环保工 作是风电场获得社会认可的基石。随着公众环境意识的 提升,风电项目面临的生态约束日益严格。部分项目因 未妥善处理噪声污染、鸟类碰撞等问题, 引发周边居民 抵制,导致工期延误或成本攀升。例如,某沿海风电场 因未安装鸟类雷达监测系统,导致候鸟迁徙季碰撞事故 频发,项目被迫停工整改三个月,直接经济损失超千万 元。反之,通过实施生态友好型设计,如采用低噪声叶 片、安装鸟类避让装置,可显著提升项目社会接受度。 丹麦某海上风电场通过优化布局减少对海洋生态的影 响,并建立社区补偿基金,使项目支持率从初期的65% 提升至90%以上。(2)环保工作还直接关联风电场的全 生命周期效益。在生态修复环节,采用植被恢复技术可 使施工迹地土壤保持能力提升3倍,减少水土流失治理成 本;在退役阶段,复合材料回收技术可将叶片处理成本 降低60%,同时实现资源循环利用。这种"绿色开发-生态修复-循环利用"的闭环模式,不仅符合可持续发展理念,更通过降低环境风险溢价,增强项目投资吸引力。因此,风电场环保工作已超越合规范畴,成为构建清洁能源产业生态、实现经济与环境协同发展的战略支点^[1]。

2 风电场环保工作面临的挑战

2.1 生态环境影响

风电场建设运营对生态环境的影响贯穿全生命周 期,且陆海差异显著。在陆域生态中,风机基础施工与 集电线路铺设需大规模开挖与平整土地,直接导致地表 植被连片破坏, 动物栖息地被分割成孤立斑块。例如, 草原风电场的施工使原本连续的草甸生态系统破碎化, 鼠兔、百灵鸟等物种的迁徙路径受阻,局部种群密度下 降,生物多样性呈现结构性缩减。同时,施工期机械碾 压与人员活动破坏土壤表层结构,降低其保水保肥能 力,叠加植被恢复滞后效应,在干旱半干旱区易引发连 锁反应——地表裸露面积增加,风蚀作用加剧,最终导 致土地沙化风险上升,影响区域生态安全。海上风电场 则通过物理占用与活动干扰双重路径影响海洋生态。桩 基施工产生的悬浮物扩散会改变水体透光性,抑制浮游 植物生长,间接影响整个食物链;运营期风机运转产生 的低频噪声与电磁场,可能干扰鱼类洄游、繁殖等关键 行为,改变底栖生物群落结构,导致生物多样性在时间 和空间上呈现不均衡变化。

2.2 噪音与视觉污染

风电机组运行产生的噪音污染具有多维度影响。 (1)在居民区层面,机组叶片切割空气产生的气动噪声 (频谱集中在200-2000Hz)与机械传动噪声形成复合声 场,夜间声压级可达45-55dB(A),超出世界卫生组织推荐 的居住区夜间噪声限值(40dB(A))。这种持续性低频噪 声易引发人体应激反应,导致周边居民睡眠质量下降、 注意力分散,长期暴露可能增加心血管疾病风险。对野 生动物而言,噪声干扰会破坏其声学通信系统,例如影响鸟类求偶鸣唱频率,干扰蝙蝠回声定位能力,迫使部分物种放弃原有栖息地,造成局部生物群落结构改变。(2)大规模风电场带来的视觉污染同样显著。密集排列的风机群改变了天际线轮廓,在自然景观区形成突兀的人工几何形态,与山地、海岸等原生地貌产生强烈视觉冲突。这种景观异质化导致旅游区吸引力下降,研究显示受视觉污染影响的景区游客重游率降低15%-20%。对居民而言,长期面对工业化景观可能引发心理不适,降低区域宜居性评价,这种隐性影响在生态敏感区与文化景观区尤为突出。

2.3 废弃物处理难题

风电场全生命周期中,废弃物处理面临着复杂且严 峻的挑战。在设备报废阶段,风机叶片、金属部件等固 体废弃物大量产生。风机叶片多由玻璃纤维增强复合材 料制成,这种材料难以自然降解,若采用填埋方式,会 长期占用土地资源,且其中的化学物质可能随雨水渗入 土壤,造成土壤污染;若进行焚烧处理,又会释放有毒 有害气体,污染大气环境。金属部件虽可回收再利用, 但回收过程需消耗大量能源,且若回收不规范,其中的 重金属等有害物质也可能对环境造成危害。在风电场运 营过程中, 含油废水、废旧电池等危险废弃物的处理同 样存在诸多难点。含油废水成分复杂,含有润滑油、液 压油等污染物,处理不当会污染地表水和地下水,影响 水生生态系统。而废旧电池中含有铅、镉等重金属,若 随意丢弃或处理不当,这些重金属会进入环境,通过食 物链积累, 最终对人体健康造成严重威胁。目前, 针对 这些危险废弃物的处理技术和设施还不够完善,处理成 本也较高。

3 风电场环保工作的应对策略

3.1 加强生态保护与修复

加强风电场的生态保护与修复需贯穿项目全周期。 在建设前期,开展全面且深入的生态环境评估至关重 要。(1)通过实地调研、数据收集与分析,精准识别 区域内的生态敏感区,如自然保护区、野生动物栖息 地、水源涵养区等。依据评估结果,运用地理信息系统 (GIS)等技术手段,科学合理规划风电场布局,严格 避让生态敏感区域,从源头上减少对生态环境的干扰。 (2)施工阶段,要采取一系列生态保护措施。例如,严 格控制施工范围,减少对周边植被和土壤的破坏;设置 临时围挡,防止施工扬尘扩散;合理安排施工时间,避 开野生动物的繁殖期、迁徙期等关键时段,降低施工活 动对野生动物生存的干扰。(3)进入运营期,积极开展 生态修复工作。针对施工造成的植被破坏,选用本地适生植物进行补植,恢复地表植被覆盖,提高土壤保水保肥能力。同时,建立生态监测体系,定期对生态系统进行监测和评估,根据监测结果及时调整修复策略,促进受损生态系统的逐步恢复,实现风电开发与生态保护的协调共进,保障区域生态环境的稳定与可持续发展^[2]。

3.2 噪音与视觉污染控制

在风电场的建设与运营中, 有效控制噪音与视觉污 染是保障周边生态环境和居民生活质量的关键。(1) 针对噪音污染,可从设备选型、布局优化和隔音措施三 方面着手。优先选用低噪音风机设备,这类设备通过优 化叶片气动设计、改进齿轮箱和发电机结构, 能显著降 低运行时的气动噪声和机械噪声。合理规划风机布局也 至关重要,依据地形、风向和周边敏感点分布,采用计 算机模拟技术确定最佳间距和排列方式,避免噪音叠加 效应。同时,在靠近居民区或生态敏感区时,设置隔音 屏障, 如吸声式或反射式隔音墙, 能有效阻挡和反射噪 音,降低传播范围内的声压级。(2)对于视觉污染,需 注重风机外观设计与景观规划的协调性。采用与自然环 境相融合的风机外观设计,如选用与当地地貌、植被颜 色相近的涂装, 使风机在视觉上更和谐。合理规划风电 场景观,将风机分布与地形起伏、植被分布相结合,避 免形成整齐划一的工业阵列,同时利用绿化带、景观小 品等进行视觉缓冲,弱化人工痕迹,让风电场成为自然 景观的一部分,实现清洁能源开发与生态美学的统一。

3.3 优化废弃物处理

在风电场的运营管理中, 优化废弃物处理是践行绿 色发展理念、降低环境风险的重要环节。(1)建立完善 的废弃物分类收集与回收利用体系是关键举措。在风电 场内设置专门的分类收集容器,依据废弃物的性质,如 金属部件、玻璃纤维叶片碎片、塑料制品等,进行细致 分类存放。针对可回收利用的废弃物,与专业的回收企 业建立长期合作机制,确保金属部件能回炉重造,制成 新的机械零件;对于部分复合材料,探索再加工技术, 使其转化为低端的建筑材料等,通过多渠道的资源化利 用,显著提高废弃物的回收利用率,减少原生资源的开 采。(2)对于风电场产生的危险废弃物,如含油废水处 理产生的污泥、废旧电池等,必须严格遵循安全处置流 程。首先,对危险废弃物进行单独密封存放,防止其泄 漏对周边环境造成污染。然后,委托具有专业资质和丰 富经验的处理机构进行处置, 在交接过程中, 详细记录 废弃物的种类、数量、产生时间等信息,确保处置过程 可追溯。专业机构会采用先进的技术和设备,对危险废

弃物进行无害化处理,保障环境安全。

4 风电场环保工作的保障措施

4.1 完善管理体系

完善风电场环保管理体系是保障生态环境安全、推 动清洁能源可持续发展的基础。(1)建立健全风电场 环保管理制度至关重要。需依据国家及地方环保法规, 结合风电场实际运营特点,制定涵盖项目建设、设备运 行、废弃物处理等全流程的环保管理制度。明确各部门 在环保工作中的职责边界,例如,工程部门负责施工期 的生态保护与污染防控,运行部门承担运营期的环境监 测与设备维护,后勤部门管理废弃物的分类与处置,形 成各司其职、协同配合的管理格局。同时,将环保责任 细化到个人,通过签订环保责任书,增强员工的环保责 任感。(2)加强环保工作监督考核是确保环保措施有效 落实的关键。建立定期与不定期相结合的监督机制,通 过现场检查、数据监测、台账核查等方式,对环保工作 进行全面评估。将环保考核结果与部门绩效、员工薪酬 挂钩,对环保工作表现突出的给予奖励,对未达标的进 行问责,形成有效的激励约束机制,推动风电场环保管 理工作规范化、常态化。

4.2 强化技术创新

强化风电场环保技术创新,是推动风电行业绿色升级、实现可持续发展的必然选择。(1)在研发投入上,风电企业应主动担当,设立专门的环保技术研发基金,确保资金稳定投入,为技术创新提供坚实保障。同时,积极搭建产学研合作桥梁,与科研机构、高校建立紧密的合作关系,共同组建专业的研发团队。围绕风电场建设与运营中的环保难题,如噪声精准控制、废弃物高效处理、生态快速修复等开展联合攻关,加速环保技术从实验室到实际应用的转化进程。(2)推广应用先进环保技术和设备是提升风电场环保工作水平的关键。企业要建立先进环保技术设备信息库,及时掌握行业最新动态。通过举办技术交流会、产品展示会等活动,促进先进技术和设备的推广。在应用过程中,根据风电场的实际情况,制定科学合理的技术设备选型和实施方案,加强人员培训,确保先进技术和设备能够充分发挥效能,

切实提高风电场的环保工作水平[3]。

4.3 提升公众意识

提升公众对风电场环保工作的意识,是推动风电行业可持续发展的内在要求。(1)加强环保宣传教育至关重要。风电企业可通过多种渠道开展宣传活动,如制作生动有趣的科普短视频,在社交媒体平台传播,介绍风电场环保技术、生态保护措施及成效;举办线下环保讲座,邀请专家为周边居民讲解风电与环保的关系,解答公众疑惑;在风电场周边设置环保宣传栏,展示环保工作动态和成果,增强公众对风电场环保工作的直观认知,从而提高其认知度和支持度。(2)建立公众参与机制是鼓励公众监督风电场环保工作的有效途径。设立公开的监督热线与邮箱,方便公众反馈问题;定期组织公众开放日活动,邀请居民代表实地参观风电场,了解环保设施运行情况;建立公众监督小组,赋予其一定的监督权利,对风电场环保工作进行定期评估,形成社会共治的良好氛围,促进风电场环保工作不断提升。

结束语

风电场环保工作是一项系统而复杂的工程,关乎气候治理、产业可持续发展与全生命周期效益提升。面对生态环境影响、噪音与视觉污染、废弃物处理等诸多挑战,需从生态保护修复、污染控制、废弃物优化处理等多维度发力。同时,完善管理体系以夯实环保根基,强化技术创新提供技术支撑,提升公众意识凝聚社会合力。只有这样,才能实现风电开发与生态保护的深度融合,让风电场在清洁能源转型中发挥更大作用,构建起经济与环境协同共进、人与自然和谐共生的清洁能源产业生态,为全球能源可持续发展贡献坚实力量。

参考文献

- [1]袁亚男.风电场运行与检修维护管理[J].湖北农机 化,2020(17):2.
- [2]姜涛.配电网不停电作业在配电自动化改造中的应用研究[J].通信电源技术,2024,41(2):53-55.
- [3]陈雪峰,李继猛,程航,李兵,何正嘉.风力发电机 状态监测和故障诊断技术的研究与进展[J].机械工程学 报,2011,47(9):45-52.